Skip to main content
Log in

Quantum dissipation in vacuum neutrino oscillation

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The pattern of neutrino oscillations changes when one considers these particles evolving as an open quantum system. In this article we derive seven possibilities that change the two-generation neutrino survival probability due to quantum dissipation and decoherence. We find entirely original probabilities assuming that these effects can be parametrized by the addition of only one phenomenological constant keeping complete positivity. We observe that a relaxation effect of the system shows an unusual mechanism of flavor conversion, the appearance of CP-violation effects for Majorana neutrinos, besides an appreciable change in the behavior of high energy neutrinos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Eguchi et al. (KamLAND Collaboration), Phys. Rev. Lett. 90, 021802 (2003)

    Article  ADS  Google Scholar 

  2. T. B. Cleveland et al. (Homestake Collaboration), Astrophys. J. 496, 505 (2003)

    Article  Google Scholar 

  3. K. S. Hirata et al. (Kamiokande Collaboration), Phys. Rev. Lett. 65, 1301 (1990)

    Article  ADS  Google Scholar 

  4. M. Altmann et al. (GNO Collaboration), Phys. Lett. B 490, 16 (2000)

    ADS  Google Scholar 

  5. J. N. Abdurashitov et al. (SAGE Collaboration), Phys. Rev. Lett. 83, 4686 (1999)

    Article  ADS  Google Scholar 

  6. Q. R. Ahmad et al. (SNO Collaboration), Phys. Rev. Lett. 89, 011302 (2002)

    Article  ADS  Google Scholar 

  7. Y. Fukuda et al. (SK Collaboration), Phys. Rev. Lett. 81, 1562 (1998)

    Article  ADS  Google Scholar 

  8. O. Miranda, M. Tortola, J. Valle, J. High Energy Phys. 10, 008 (2006)

    Article  ADS  Google Scholar 

  9. V. N. Gribov, B. Pontecorvo, Phys. Lett. 28, 493 (1969)

    Google Scholar 

  10. F. Benatti, R. Floreanini, J. High Energy Phys. 02, 32 (2000)

    Article  ADS  Google Scholar 

  11. F. Benatti, R. Floreanini, Phys. Rev. D 64, 085015 (2001)

    Article  ADS  Google Scholar 

  12. V. Gorini, A. Kossakowski, J. Math. Phys. 17, 821 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  13. G. Lindblad, Commun. Phys. 48, 119 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. E. B. Davies, Commun. Phys. 39, 91 (1974)

    Article  ADS  MATH  Google Scholar 

  15. J. Ellis et al., Nucl. Phys. B 241, 381 (1984)

    Article  ADS  Google Scholar 

  16. D. Morgan et al., Astrophys. Phys. 25, 311 (2006)

    Article  ADS  Google Scholar 

  17. E. Lisi, A. Marrone, D. Montanino, Phys. Rev. Lett. 85, 1166 (2000)

    Article  ADS  Google Scholar 

  18. A. M. Gago et al., arXiv:hep-ph/0208166 (2002)

  19. G. Barenboim, N. E. Mavromato, J. High Energy Phys. 01, 31 (2005)

    Google Scholar 

  20. G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, Phys. Rev. D 67, 093006 (2003)

    Article  ADS  Google Scholar 

  21. G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, Phys. Rev. D 76, 033006 (2007)

    Article  ADS  Google Scholar 

  22. F. Benatti, H. Narnhofer, Lett. Math. Phys. 15, 325 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. T. Ohlsson, Phys. Lett. B 502, 159 (2001)

    Article  ADS  Google Scholar 

  24. Y. Liu, L. Hu, M. L. Ge, Phys. Rev. D 56, 6648 (1997)

    Article  ADS  Google Scholar 

  25. C. Cohen-Tannoudji et al., Quantum Mechanics, vol. I (Hermann, Paris, 1977)

    Google Scholar 

  26. U. Weiss, Quantum Dissipative Systems, vol. XIII (World Scientific/Hermann, Singapore, 1993)

    MATH  Google Scholar 

  27. R. Dumcke, H. Sponh, Z. Phys. B 34, 419 (1979)

    Article  ADS  Google Scholar 

  28. R. Alicki, K. Lendi, Quantum Dynamical Semigroups and Applications, Lect. Notes Phys. (Springer-Verlag, Berlin, 1987)

    MATH  Google Scholar 

  29. H. P. Breuer, F. Petruccione, The Theory of Open Quantum Systems, Lect. Notes Phys. (Oxford University Press, Oxford, 2002)

    MATH  Google Scholar 

  30. K. Kraus, Annals. Phys. 64, 311 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  31. R. N. Mohapatra, P. B. Pal, Massive Neutrinos in Physics and Astrophysics, vol. 60 (Word Scientific Publishing, Singapore, 1998)

    Google Scholar 

  32. J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, New York, 1985)

    Google Scholar 

  33. P. B. Pal, Int. J. Mod. Phys. 22, 5387 (1992)

    ADS  Google Scholar 

  34. K. Eguchi et al. (KamLAND Collaboration), Phys. Rev. Lett. 100, 221803 (2008)

    Article  Google Scholar 

  35. D. Hooper et al., Phys. Lett. B 75, 2650 (1995)

    Article  Google Scholar 

  36. M. M. Guzzo, C. A. Moura, Astropart. Phys. 25, 277 (2006)

    Article  ADS  Google Scholar 

  37. Y. Fukuda et al. (SK Collaboration), Phys. Rev. D 74, 032002 (2006)

    Article  Google Scholar 

  38. P. Adamson et al. (MINOS Collaboration), Phys. Rev. D 73, 072002 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Guzzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, R.L.N., Guzzo, M.M. Quantum dissipation in vacuum neutrino oscillation. Eur. Phys. J. C 69, 493–502 (2010). https://doi.org/10.1140/epjc/s10052-010-1388-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-010-1388-1

Keywords

Navigation