Skip to main content
Log in

Radiative and semileptonic B decays involving higher K-resonances in the final states

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We study the radiative and semileptonic B decays involving a spin-J resonant \(K_{J}^{(*)}\) with parity (−1)J for \(K_{J}^{*}\) and (−1)J+1 for K J in the final state. Using large energy effective theory (LEET) techniques, we formulate \(B\to K_{J}^{(*)}\) transition form factors in the large recoil region in terms of two independent LEET functions \(\zeta_{\perp}^{K_{J}^{(*)}}\) and \(\zeta_{\parallel}^{K_{J}^{(*)}}\), the values of which at zero momentum transfer are estimated in the BSW model. According to the QCD counting rules, \(\zeta_{\perp,\parallel}^{K_{J}^{(*)}}\) exhibit a dipole dependence in q 2. We predict the decay rates for \(B\to K_{J}^{(*)}\gamma\), \(B\to K_{J}^{(*)}\ell^{+}\ell^{-}\) and \(B\to K_{J}^{(*)}\nu \bar{\nu}\). The branching fractions for these decays with higher K-resonances in the final state are suppressed due to the smaller phase spaces and the smaller values of \(\zeta^{K_{J}^{(*)}}_{\perp,\parallel}\). Furthermore, if the spin of \(K_{J}^{(*)}\) becomes larger, the branching fractions will be further suppressed due to the smaller Clebsch–Gordan coefficients defined by the polarization tensors of the \(K_{J}^{(*)}\). We also calculate the forward–backward asymmetry of the \(B\to K_{J}^{(*)}\ell^{+}\ell^{-}\) decay, for which the zero is highly insensitive to the K-resonances in the LEET parametrization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Ishikawa et al. (Belle Collaboration), Phys. Rev. Lett. 96, 251801 (2006). arXiv:hep-ex/0603018

    Article  ADS  Google Scholar 

  2. B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 73, 092001 (2006). arXiv:hep-ex/0604007

    Article  ADS  Google Scholar 

  3. B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 79, 031102 (2009). arXiv:0804.4412 [hep-ex]

    Article  ADS  Google Scholar 

  4. B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 102, 091803 (2009). arXiv:0807.4119 [hep-ex]

    Article  ADS  Google Scholar 

  5. I. Adachi et al. (Belle Collaboration), arXiv:0810.0335 [hep-ex]

  6. J.T. Wei, P. Chang (Belle collaboration), arXiv:0904.0770 [hep-ex]

  7. G. Eigen, arXiv:0807.4076 [hep-ex]

  8. A. Ali, P. Ball, L.T. Handoko, G. Hiller, Phys. Rev. D 61, 074024 (2000). arXiv:hep-ph/9910221

    Article  ADS  Google Scholar 

  9. T. Feldmann, J. Matias, J. High Energy Phys. 0301, 074 (2003). arXiv:hep-ph/0212158

    Article  ADS  Google Scholar 

  10. J. Charles, A. Le Yaouanc, L. Oliver, O. Pene, J.C. Raynal, Phys. Rev. D 60, 014001 (1999). arXiv:hep-ph/9812358

    Article  ADS  Google Scholar 

  11. H. Hatanaka, K.C. Yang, Phys. Rev. D 79, 114008 (2009). arXiv:0903.1917 [hep-ph]

    Article  ADS  Google Scholar 

  12. T.E. Coan et al. (CLEO Collaboration), Phys. Rev. Lett. 84, 5283 (2000). arXiv:hep-ex/9912057

    Article  ADS  Google Scholar 

  13. M. Nakao et al. (BELLE Collaboration), Phys. Rev. D 69, 112001 (2004). arXiv:hep-ex/0402042

    Article  ADS  Google Scholar 

  14. B. Aubert et al. (BABAR Collaboration), arXiv:0808.1915 [hep-ex]

  15. B. Aubert (The BABAR Collaboration), arXiv:0906.2177 [hep-ex]

  16. B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 70, 091105 (2004). arXiv:hep-ex/0409035

    Article  ADS  Google Scholar 

  17. S. Nishida et al. (Belle Collaboration), Phys. Rev. Lett. 89, 231801 (2002). arXiv:hep-ex/0205025

    Article  ADS  Google Scholar 

  18. S. Nishida et al. (Belle Collaboration), Phys. Lett. B 610, 23 (2005). arXiv:hep-ex/0411065

    Article  ADS  Google Scholar 

  19. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 79, 011104 (2009). arXiv:0804.3908 [hep-ex]

    Article  ADS  Google Scholar 

  20. K.F. Chen et al. (BELLE Collaboration), Phys. Rev. Lett. 99, 221802 (2007). arXiv:0707.0138 [hep-ex]

    Article  ADS  Google Scholar 

  21. B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 78, 072007 (2008). arXiv:0808.1338 [hep-ex]

    Article  ADS  Google Scholar 

  22. H. Yang et al., Phys. Rev. Lett. 94, 111802 (2005). arXiv:hep-ex/0412039

    Article  ADS  Google Scholar 

  23. B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 72, 052004 (2005). arXiv:hep-ex/0508004

    Article  ADS  Google Scholar 

  24. S. Chen et al. (CLEO Collaboration), Phys. Rev. Lett. 87, 251807 (2001). arXiv:hep-ex/0108032

    Article  ADS  Google Scholar 

  25. K. Abe et al. (Belle Collaboration), AIP Conf. Proc. 1078, 342 (2009). arXiv:0804.1580 [hep-ex]

    Google Scholar 

  26. S. Glenn et al. (CLEO Collaboration), Phys. Rev. Lett. 80, 2289 (1998). arXiv:hep-ex/9710003

    Article  ADS  Google Scholar 

  27. B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 93, 081802 (2004). arXiv:hep-ex/0404006

    Article  ADS  Google Scholar 

  28. M. Iwasaki et al. (Belle Collaboration), Phys. Rev. D 72, 092005 (2005). arXiv:hep-ex/0503044

    Article  ADS  Google Scholar 

  29. C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008)

    Article  ADS  Google Scholar 

  30. E. Barberio et al. (Heavy Flavor Averaging Group), arXiv:0808.1297 [hep-ex]

  31. M. Wirbel, B. Stech, M. Bauer, Z. Phys. C 29, 637 (1985)

    ADS  Google Scholar 

  32. A. Ali, T. Ohl, T. Mannel, Phys. Lett. B 298, 195 (1993). arXiv:hep-ph/9208207

    Article  ADS  Google Scholar 

  33. D. Ebert, R.N. Faustov, V.O. Galkin, H. Toki, Phys. Rev. D 64, 054001 (2001). arXiv:hep-ph/0104264

    Article  ADS  Google Scholar 

  34. H.Y. Cheng, C.K. Chua, Phys. Rev. D 69, 094007 (2004). arXiv:hep-ph/0401141

    Article  ADS  Google Scholar 

  35. H. Hatanaka, K.C. Yang, Phys. Rev. D 77, 094023 (2008); [Erratum-ibid. D 78, 059902 (2008)]. arXiv:0804.3198 [hep-ph]

    Article  ADS  Google Scholar 

  36. N. Isgur, D. Scora, B. Grinstein, M.B. Wise, Phys. Rev. D 39, 799 (1989)

    Article  ADS  Google Scholar 

  37. H. Hatanaka, K.C. Yang, Phys. Rev. D 78, 074007 (2008). arXiv:0808.3731 [hep-ph]

    Article  ADS  Google Scholar 

  38. CKMfitter Group [http://ckmfitter.in2p3.fr], results as of summer in 2008

  39. A. Ali, A.Y. Parkhomenko, Eur. Phys. J. C 23, 89 (2002). arXiv:hep-ph/0105302

    Article  ADS  Google Scholar 

  40. V.L. Chernyak, A.R. Zhitnitsky, Phys. Rep. 112, 173 (1984)

    Article  ADS  Google Scholar 

  41. A.J. Buras, M. Munz, Phys. Rev. D 52, 186 (1995). arXiv:hep-ph/9501281

    Article  ADS  Google Scholar 

  42. A. Ali, T. Mannel, T. Morozumi, Phys. Lett. B 273, 505 (1991)

    Article  ADS  Google Scholar 

  43. C.S. Lim, T. Morozumi, A.I. Sanda, Phys. Lett. B 218, 343 (1989)

    Article  ADS  Google Scholar 

  44. T. Inami, C.S. Lim, Prog. Theor. Phys. 65, 297 (1981); [Erratum-ibid. 65, 1772 (1981)]

    Article  ADS  Google Scholar 

  45. G. Buchalla, A.J. Buras, Nucl. Phys. B 400, 225 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwei-Chou Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatanaka, H., Yang, KC. Radiative and semileptonic B decays involving higher K-resonances in the final states. Eur. Phys. J. C 67, 149–162 (2010). https://doi.org/10.1140/epjc/s10052-010-1293-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-010-1293-7

Keywords

Navigation