Skip to main content
Log in

γ*ρ0π0 transition form factor in extended AdS/QCD models

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The γ * ρ 0π 0 transition form factor is extracted from recent result for the γ * γ * π 0 form factor obtained in the extended hard-wall AdS/QCD model with a Chern–Simons term. In the large momentum region, the form factor exhibits a 1/Q 4 behavior, in accordance with the perturbative QCD analysis, and also with the Light-Cone Sum Rule (LCSR) result if the pion wave function exhibits the same endpoint behavior as the asymptotic one. The appearance of this power behavior from the AdS side and the LCSR approach seem to be rather similar: both of them come from the “soft” contributions. Comparing the expressions for the form factor in both sides, one can obtain the duality relation \(z\propto \sqrt{u(1-u)}\), which is compatible with one of the most important relations of the Light-Front holography advocated by Brodsky and de Teramond. In the moderate Q 2 region, the comparison of the numerical results from both approaches also supports a asymptotic-like pion wave function, in accordance with previous studies for the γ * γ * π 0 form factor. The form factor at zero momentum transfer gives the γ * ρ 0 π 0 coupling constant, from which one can determine the partial width for the ρ 0(ω)→π 0 γ decay. We also calculate the form factor in the time-like region, and study the corresponding Dalitz decays ρ 0(ω)→ π 0 e + e π 0 μ + μ . Although all these results are obtained in the chiral limit, numerical calculations with finite quark masses show that the corrections are extremely small. Some of these calculations are repeated in the Hirn–Sanz model and similar results are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Y. Aoki, T. Blum, … Flavour Lattice Averaging Group (FLAG)

References

  1. J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231–252 (1998). arXiv:hep-th/9711200

    MATH  MathSciNet  ADS  Google Scholar 

  2. E. Witten, Adv. Theor. Math. Phys. 2, 253–291 (1998). arXiv:hep-th/9802150

    MATH  MathSciNet  Google Scholar 

  3. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B 428, 105–114 (1998). arXiv:hep-th/9802109

    Article  MathSciNet  ADS  Google Scholar 

  4. J. Polchinski, M.J. Strassler, Phys. Rev. Lett. 88, 031601 (2002). arXiv:hep-th/0109174

    Article  MathSciNet  ADS  Google Scholar 

  5. H. Boschi-Filho, N.R.F. Braga, Eur. Phys. J. C 32, 529–533 (2004). arXiv:hep-th/0209080

    Article  ADS  Google Scholar 

  6. G.F. de Teramond, S.J. Brodsky, Phys. Rev. Lett. 94, 201601 (2005). arXiv:hep-th/0501022

    Article  ADS  Google Scholar 

  7. S.J. Brodsky, G.F. de Teramond, Phys. Rev. Lett. 96, 201601 (2006). arXiv:hep-ph/0602252

    Article  ADS  Google Scholar 

  8. J. Erlich, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. Lett. 95, 261602 (2005). arXiv:hep-ph/0501128

    Article  ADS  Google Scholar 

  9. L. Da Rold, A. Pomarol, Nucl. Phys. B 721, 79–97 (2005). arXiv:hep-ph/0501218

    Article  MATH  ADS  Google Scholar 

  10. J. Hirn, V. Sanz, J. High Energy Phys. 12, 030 (2005). arXiv:hep-ph/0507049

    Article  MathSciNet  ADS  Google Scholar 

  11. S. Hong, S. Yoon, M.J. Strassler, J. High Energy Phys. 04, 003 (2006). arXiv:hep-th/0409118

    Article  MathSciNet  ADS  Google Scholar 

  12. H.R. Grigoryan, A.V. Radyushkin, Phys. Lett. B 650, 421–427 (2007). arXiv:hep-ph/0703069

    Article  ADS  Google Scholar 

  13. S.J. Brodsky, G.F. de Teramond, Phys. Rev. D 77, 056007 (2008). arXiv:0707.3859

    Article  ADS  Google Scholar 

  14. H.J. Kwee, R.F. Lebed, J. High Energy Phys. 01, 027 (2008). arXiv:0708.4054

    Article  ADS  Google Scholar 

  15. H.R. Grigoryan, A.V. Radyushkin, Phys. Rev. D 76, 115007 (2007). arXiv:0709.0500

    Article  ADS  Google Scholar 

  16. H. Forkel, Phys. Rev. D 78, 025001 (2008). arXiv:0711.1179

    Article  MathSciNet  ADS  Google Scholar 

  17. Z. Abidin, C.E. Carlson, Phys. Rev. D 80, 115010 (2009). arXiv:0908.2452

    Article  ADS  Google Scholar 

  18. T. Sakai, S. Sugimoto, Prog. Theor. Phys. 113, 843–882 (2005). arXiv:hep-th/0412141

    Article  MATH  ADS  Google Scholar 

  19. G. Panico, A. Wulzer, J. High Energy Phys. 05, 060 (2007). arXiv:hep-th/0703287

    Article  MathSciNet  ADS  Google Scholar 

  20. S.K. Domokos, J.A. Harvey, Phys. Rev. Lett. 99, 141602 (2007). arXiv:0704.1604

    Article  ADS  Google Scholar 

  21. A. Pomarol, A. Wulzer, Nucl. Phys. B 809, 347–361 (2009). arXiv:0807.0316

    Article  ADS  Google Scholar 

  22. H.R. Grigoryan, A.V. Radyushkin, Phys. Rev. D 77, 115024 (2008). arXiv:0803.1143

    Article  ADS  Google Scholar 

  23. V.L. Chernyak, A.R. Zhitnitsky, Phys. Rep. 112, 173 (1984)

    Article  ADS  Google Scholar 

  24. V.M. Braun, I.E. Halperin, Phys. Lett. B 328, 457–465 (1994). arXiv:hep-ph/9402270

    Article  ADS  Google Scholar 

  25. A. Khodjamirian, Eur. Phys. J. C 6, 477–484 (1999). arXiv:hep-ph/9712451

    ADS  Google Scholar 

  26. A. Gokalp, O. Yilmaz, Eur. Phys. J. C 24, 117–120 (2002). arXiv:nucl-th/0103033

    Article  ADS  Google Scholar 

  27. S.-L. Zhu, W.Y.P. Hwang, Z.-S. Yang, Phys. Lett. B 420, 8–12 (1998). arXiv:nucl-th/9802043

    Article  ADS  Google Scholar 

  28. S. Hong, S. Yoon, M.J. Strassler, J. High Energy Phys. 04, 003 (2006). arXiv:hep-th/0409118

    Article  MathSciNet  ADS  Google Scholar 

  29. H.R. Grigoryan, A.V. Radyushkin, Phys. Rev. D 76, 095007 (2007). arXiv:0706.1543

    Article  ADS  Google Scholar 

  30. P. Ball, V.M. Braun, Phys. Rev. D 55, 5561–5576 (1997). arXiv:hep-ph/9701238

    Article  ADS  Google Scholar 

  31. V.M. Braun, I.E. Filyanov, Z. Phys. C 44, 157 (1989)

    Article  Google Scholar 

  32. V.L. Eletsky, Y.I. Kogan, Z. Phys. C 20, 357 (1983)

    Article  ADS  Google Scholar 

  33. A.I. Titov, T.S.H. Lee, H. Toki, O. Streltsova, Phys. Rev. C 60, 035205 (1999)

    Article  ADS  Google Scholar 

  34. Y.-S. Oh, A.I. Titov, T.S. Harry Lee, arXiv:nucl-th/0004055 (2000)

  35. C. Amsler et al. (Particle Data Group Collaboration), Phys. Lett. B 667, 1 (2008)

    Article  ADS  Google Scholar 

  36. H.R. Grigoryan, A.V. Radyushkin, Phys. Rev. D 78, 115008 (2008). arXiv:0808.1243

    Article  ADS  Google Scholar 

  37. S.K. Domokos, H.R. Grigoryan, J.A. Harvey, Phys. Rev. D 80, 115018 (2009). arXiv:0905.1949

    Article  ADS  Google Scholar 

  38. D. Becciolini, M. Redi, A. Wulzer, arXiv:0906.4562 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fen Zuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuo, F., Jia, Y. & Huang, T. γ*ρ0π0 transition form factor in extended AdS/QCD models. Eur. Phys. J. C 67, 253–261 (2010). https://doi.org/10.1140/epjc/s10052-010-1277-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-010-1277-7

Keywords

Navigation