Skip to main content
Log in

Cosmological constant in a model with superstring-inspired E 6 unification and shadow θ-particles

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We have developed the concept of parallel existence of the ordinary (O-) and mirror (M-), or shadow (Sh-) worlds. In the first part of the paper we consider a mirror world with broken mirror parity and the breaking E 6→SU(3)3 in both worlds. We show that in this case the evolutions of coupling constants in the O- and M-worlds are not identical, having different parameters for similar evolutions. E 6 unification, inspired by superstring theory, restores the broken mirror parity at the scale ∼1018 GeV. With the aim to explain the tiny cosmological constant, in the second part we consider the breakings: E 6→SO(10)×U(1) Z in the O-world, and E6→SU(6)′×SU(2)′ θ in the Sh-world. We assume the existence of shadow θ-particles and the low-energy symmetry group SU(3)′ C ×SU(2)′ L ×SU(2)′ θ ×U(1)′ Y in the shadow world, instead of the Standard Model. The additional non-Abelian SU(2)′ θ group with massless gauge fields, “thetons”, has a macroscopic confinement radius 1/Λ θ . The assumption that Λ θ ≈2.3⋅10−3 eV explains the tiny cosmological constant given by recent astrophysical measurements. In this way the present work opens the possibility to specify a grand unification group, such as E 6, from cosmology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Nishijima, M.H. Saffouri, Phys. Rev. Lett. 14, 205 (1965)

    ADS  Google Scholar 

  2. A.G. Riess et al., Astron. J. 116, 1009 (1998). astro-ph/9805201

    ADS  Google Scholar 

  3. S.J. Perlmutter et al., Nature 391, 51 (1998). astro-ph/9712212

    ADS  Google Scholar 

  4. S.J. Perlmutter et al., Astrophys. J. 517, 565 (1999). astro-ph/9812133

    ADS  Google Scholar 

  5. C.L. Bennett et al., Astrophys. J. Suppl. 148, 1 (2003). astro-ph/0302207

    ADS  Google Scholar 

  6. D.N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003). astro-ph/0302209

    ADS  Google Scholar 

  7. D.N. Spergel et al., Astrophys. J. Suppl. 170, 377 (2007). astro-ph/0603449

    ADS  Google Scholar 

  8. P. Astier et al., Astron. Astrophys. 447, 31 (2006). astro-ph/0510447

    ADS  Google Scholar 

  9. P.J.E. Peebles, A. Vilenkin, Phys. Rev. D 59, 063505 (1999). astro-ph/9810509

    ADS  Google Scholar 

  10. C. Wetterich, Nucl. Phys. B 302, 668 (1988)

    ADS  Google Scholar 

  11. S.M. Carroll, Phys. Rev. Lett. 81, 3067 (1998). astro-ph/9806099

    ADS  Google Scholar 

  12. Y. Fujii, T. Nishioka, Phys. Rev. D 42, 361 (1990)

    ADS  Google Scholar 

  13. B. Ratra, P.J.E. Peebles, Phys. Rev. D 37, 3406 (1988)

    ADS  Google Scholar 

  14. B. Ratra, P.J.E. Peebles, Astrophys. J. 325, L17 (1988)

    ADS  Google Scholar 

  15. A.D. Linde, in The Very Early Universe, ed. by G.W. Gibbons, S.W. Hawking, S. Siklos (Cambridge University Press, Cambridge, 1983), pp. 205–249

    Google Scholar 

  16. A.R. Liddle, D.H. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  17. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006). hep-th/0603057

    MATH  MathSciNet  ADS  Google Scholar 

  18. P.Q. Hung, E. Masso, G. Zsembinszki, J. Cosmol. Astropart. Phys. 0612, 004 (2006). astro-ph/0609777

    ADS  Google Scholar 

  19. P.Q. Hung, Nucl. Phys. B 747, 55 (2006). hep-ph/0512282

    ADS  Google Scholar 

  20. A new strong interaction sector as the origin for the dark energy and dark matter. hep-ph/0504060

  21. P.Q. Hung, P. Mosconi, hep-ph/0611001

  22. P.Q. Hung, J. Phys. A 40, 6871 (2007). astro-ph/0612245

    ADS  Google Scholar 

  23. P.Q. Hung, arXiv:0707.2791 [hep-ph]

  24. M. Adibzadeh, P.Q. Hung, Nucl. Phys. B 804, 223 (2008). arXiv:0801.4895 [astro-ph]

    ADS  Google Scholar 

  25. C.R. Das, L.V. Laperashvili, Int. J. Mod. Phys. A 23, 1863 (2008). arXiv:0712.1326 [hep-ph]

    MATH  ADS  Google Scholar 

  26. C.R. Das, L.V. Laperashvili, Phys. At. Nucl. 72, 377 (2009) [Yad. Fiz. 72, 407 (2009)]

    Google Scholar 

  27. J.H. Schwarz, Phys. Rep. 89, 223 (1982)

    MATH  MathSciNet  ADS  Google Scholar 

  28. M.B. Green, Surv. High Energy Phys. 3, 127 (1984)

    Google Scholar 

  29. D.J. Gross, J.A. Harvey, E. Martinec, R. Rohm, Phys. Rev. Lett. 54, 502 (1985)

    MathSciNet  ADS  Google Scholar 

  30. D.J. Gross, J.A. Harvey, E. Martinec, R. Rohm, Nucl. Phys. B 256, 253 (1985)

    MathSciNet  ADS  Google Scholar 

  31. D.J. Gross, J.A. Harvey, E. Martinec, R. Rohm, Nucl. Phys. B 267, 75 (1986)

    MathSciNet  ADS  Google Scholar 

  32. P. Candelas, G.T. Horowitz, A. Strominger, E. Witten, Nucl. Phys. B 258, 46 (1985)

    MathSciNet  ADS  Google Scholar 

  33. M.B. Green, J.H. Schwarz, Phys. Lett. B 149, 117 (1984)

    MathSciNet  ADS  Google Scholar 

  34. M.B. Green, J.H. Schwarz, Phys. Lett. B 151, 21 (1985)

    MathSciNet  ADS  Google Scholar 

  35. M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory (Cambridge University Press, Cambridge, 1988)

    Google Scholar 

  36. T.D. Lee, C.N. Yang, Phys. Rev. 104, 254 (1956)

    ADS  Google Scholar 

  37. I.Yu. Kobzarev, L.B. Okun, I.Ya. Pomeranchuk, Yad. Fiz. 3, 1154 (1966) [Sov. J. Nucl. Phys. 3, 837 (1966)]

    Google Scholar 

  38. L.B. Okun, I.Ya. Pomeranchuk, Pis’ma Zh. Eksp. Teor. Fiz. 1, 28 (1965) [JETP Lett. 1, 167 (1965)]

    Google Scholar 

  39. L.B. Okun, I.Ya. Pomeranchuk, Phys. Lett. 16, 338 (1965)

    MathSciNet  ADS  Google Scholar 

  40. E.W. Kolb, D. Seckel, M.S. Turner, Nature 314, 415 (1985) [Fermilab-Pub-85/16-A, Jan.1985]

    ADS  Google Scholar 

  41. Z. Berezhiani, A. Dolgov, R.N. Mohapatra, Phys. Lett. B 375, 26 (1996). hep-ph/9511221

    MATH  MathSciNet  ADS  Google Scholar 

  42. Z. Berezhiani, Acta Phys. Pol. B 27, 1503 (1996). hep-ph/9602326

    ADS  Google Scholar 

  43. Z. Berezhiani, R.N. Mohapatra, Phys. Rev. D 52, 6607 (1995). hep-ph/9505385

    ADS  Google Scholar 

  44. R. Slansky, Phys. Rep. 79, 1 (1981)

    MathSciNet  ADS  Google Scholar 

  45. L.B. Okun, JETP Lett. 31, 144 (1980) [Pisma Zh. Eksp. Teor. Fiz. 31 (1979), 156]

    ADS  Google Scholar 

  46. L.B. Okun, Nucl. Phys. B 173, 1 (1980)

    MathSciNet  ADS  Google Scholar 

  47. R. Howl, S.F. King, J. High Energy Phys. 0801, 030 (2008). arXiv:0708.1451 [hep-ph]

    MathSciNet  ADS  Google Scholar 

  48. S.F. King, S. Moretti, R. Nevzorov, Phys. Lett. B 650, 57 (2007). hep-ph/0701064

    ADS  Google Scholar 

  49. S.F. King, S. Moretti, R. Nevzorov, Phys. Lett. B 634, 278 (2006). hep-ph/0511256

    ADS  Google Scholar 

  50. S.F. King, S. Moretti, R. Nevzorov, Phys. Rev. D 73, 035009 (2006). hep-ph/0510419

    ADS  Google Scholar 

  51. S.F. King, S. Moretti, R. Nevzorov, AIP Conf. Proc. 881, 138 (2007). hep-ph/0610002

    ADS  Google Scholar 

  52. P. Athon, F. King, D.J. Miller, S. Moretti, R. Nevzorov, arXiv:0901.1192 [hep-ph]

  53. M. Frank, I. Turan, M. Sher, Phys. Rev. D 71, 113002 (2005) hep-ph/0503084

    ADS  Google Scholar 

  54. N. Maekawa, Prog. Theor. Phys. 112, 639 (2004). hep-ph/0402224

    MATH  ADS  Google Scholar 

  55. N. Maekawa, T. Yamashita, Prog. Theor. Phys. 110, 93 (2003). hep-ph/0303207

    MATH  MathSciNet  ADS  Google Scholar 

  56. B. Stech, Z. Tavartkiladze, Phys. Rev. D 77, 076009 (2008). arXiv:0802.0894 [hep-ph]

    ADS  Google Scholar 

  57. B. Stech, Z. Tavartkiladze, Phys. Rev. D 70, 035002 (2004). hep-ph/0311161

    ADS  Google Scholar 

  58. Y. Achiman, A. Lukas, Phys. Lett. B 296, 127 (1992). hep-ph/9208235

    ADS  Google Scholar 

  59. Y. Achiman, A. Lukas, Nucl. Phys. B 384, 78 (1992)

    ADS  Google Scholar 

  60. C.R. Das, L.V. Laperashvili, Int. J. Mod. Phys. A (2009), in press. hep-ph/0604052

  61. C.R. Das, L.V. Laperashvili, SIGMA 4, 012 (2008). arXiv:0707.4551 [hep-ph]

    MathSciNet  Google Scholar 

  62. H. Georgi, S.L. Glashow, Phys. Rev. Lett. 32, 438 (1974)

    ADS  Google Scholar 

  63. L.B. Okun, JETP Lett. 79, 694 (1980)

    Google Scholar 

  64. Ya.B. Zeldovich, M.Yu. Khlopov, Usp. Fiz. Nauk 135, 45 (1981) [Sov. Phys. Uspekhi 24, 755 (1981)]

    ADS  Google Scholar 

  65. S.I. Blinnikov, M.Yu. Khlopov, Yad. Fiz. 36, 809 (1982) [Sov. J. Nucl. Phys. 36, 472 (1982)]

    Google Scholar 

  66. S.I. Blinnikov, M.Yu. Khlopov, Astron. Zh. 60, 632 (1983) [Sov. Astron. 27, 371 (1983)]

    ADS  Google Scholar 

  67. B. Holdom, Phys. Lett. B 166, 196 (1986)

    ADS  Google Scholar 

  68. S.L. Glashow, Phys. Lett. B 167, 35 (1986)

    ADS  Google Scholar 

  69. E.D. Carlson, S.L. Glashow, Phys. Lett. B 193, 168 (1987)

    ADS  Google Scholar 

  70. M. Sajin, M. Khlopov, Sov. Astron. 66, 191 (1989)

    Google Scholar 

  71. M.Yu. Khlopov, G.M. Beskin, N.G. Bochkarev, L.A. Pustylnik, S.A. Pustylnik, Astron. Zh. 68, 42 (1991) [Sov. Astron. 35, 21 (1991)]

    ADS  Google Scholar 

  72. R. Foot, H. Lew, R.R. Volkas, Phys. Lett. B 272, 67 (1991)

    ADS  Google Scholar 

  73. R. Foot, H. Lew, R.R. Volkas, Mod. Phys. Lett. A 7, 2567 (1992)

    ADS  Google Scholar 

  74. R. Foot, R.R. Volkas, Phys. Rev. D 52, 6595 (1995). hep-ph/9505359

    ADS  Google Scholar 

  75. M.Yu. Khlopov, K.I. Shibaev, Gravit. Cosmol. Suppl. 8N1, 45 (2002)

    Google Scholar 

  76. Z. Berezhiani, Int. J. Mod. Phys. A 19, 3775 (2004). hep-ph/0312335

    MATH  ADS  Google Scholar 

  77. Z. Berezhiani, D. Comelli, F.L. Villante, Phys. Lett. B 503, 362 (2001). hep-ph/0008105

    ADS  Google Scholar 

  78. L. Bento, Z. Berezhiani, Phys. Rev. Lett. 87, 231304 (2001). hep-ph/0111116

    ADS  Google Scholar 

  79. L. Bento, Z. Berezhiani, Fortsch. Phys. 50, 489 (2002)

    MATH  ADS  Google Scholar 

  80. Z. Berezhiani, P. Ciarcelluti, D. Comelli, F.L. Villante, Int. J. Mod. Phys. D 14, 107 (2005). astro-ph/0312605

    MATH  ADS  Google Scholar 

  81. Z. Berezhiani, in Ian Kogan Memorial Collection, ed. by M. Shifman et al., From Fields to Strings: Circumnavigating Theoretical Physics, vol. 3 (World Scientific, Singapore, 2005), pp. 2147–2195. hep-ph/0508233

    Google Scholar 

  82. L.B. Okun, Phys. Usp. 50, 380 (2007). hep-ph/0606202

    ADS  Google Scholar 

  83. S.I. Blinnikov, arXiv:0904.3609 [astro-ph.CO]

  84. C. Ford, D.R.T. Jones, P.W. Stephenson, M.B. Einhorn, Nucl. Phys. B 395, 17 (1993). hep-lat/9210033

    ADS  Google Scholar 

  85. C. Ford, I. Jack, D.R.T. Jones, Nucl. Phys. B 387, 373 (1992). Erratum—ibid, B 504, 551 (1997). hep-ph/0111190

    ADS  Google Scholar 

  86. C.D. Froggatt, L.V. Laperashvili, H.B. Nielsen, Phys. At. Nucl. 69, 67 (2006). hep-ph/0407102

    Google Scholar 

  87. C. Amster et al. (Particle Data Group) Phys. Lett. B 667 (2008)

  88. J.C. Pati, A. Salam, Phys. Rev. D 10, 275 (1974)

    ADS  Google Scholar 

  89. R.N. Mohapatra, J.C. Pati, Phys. Rev. D 11, 566 (1975)

    ADS  Google Scholar 

  90. R.N. Mohapatra, J.C. Pati, Phys. Rev. D 11, 2558 (1975)

    ADS  Google Scholar 

  91. G. Senjanovic, R.N. Mohapatra, Phys. Rev. D 12, 1502 (1975)

    ADS  Google Scholar 

  92. H. Goldberg, Phys. Lett. B 492, 153 (2000). hep-ph/0003197

    MATH  MathSciNet  ADS  Google Scholar 

  93. A. Riees et al., Astrophys. J. Suppl. 183, 109 (2009). arXiv:0905.0697 [astro-ph.CO]

    ADS  Google Scholar 

  94. W.L. Freedman et al., Astrophys. J. 704, 1036 (2009). arXiv:0907.4524 [astro-ph.CO]

    Google Scholar 

  95. R. Kessler et al., arXiv:0908.4274

  96. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)

    MATH  MathSciNet  ADS  Google Scholar 

  97. C.D. Froggatt, L.V. Laperashvili, R.B. Nevzorov, H.B. Nielsen, Phys. At. Nucl. 67, 582 (2004) [Yad. Fiz. 67, 601 (2004)]

    Google Scholar 

  98. C. Froggatt, R. Nevzorov, H.B. Nielsen, Nucl. Phys. B 743, 133 (2006). hep-ph/0511259

    MATH  ADS  Google Scholar 

  99. C. Froggatt, R. Nevzorov, H.B. Nielsen, J. Phys. Conf. Ser. 110, 072012 (2008). arXiv:0708.2907 [hep-ph]

    ADS  Google Scholar 

  100. C. Froggatt, L. Laperashvili, R. Nevzorov, H.B. Nielsen, in Proceedings of 7th Workshop on ‘What Comes Beyond the Standard Model’, Bled, Slovenia, 19–30 Jul 2004 (DMFA-Zaloznistvo, Ljubljana, 2004), pp. 17–27. hep-ph/0411273

    Google Scholar 

  101. D.L. Bennett, H.B. Nielsen, Int. J. Mod. Phys. A 9, 5155 (1994). hep-ph/9311321

    ADS  Google Scholar 

  102. D.L. Bennett, H.B. Nielsen, Int. J. Mod. Phys. A 14, 3313 (1999). hep-ph/9607278

    ADS  Google Scholar 

  103. C.D. Froggatt, H.B. Nielsen, Origin of Symmetries (World Scientific, Singapore, 1991)

    Google Scholar 

  104. C.D. Froggatt, H.B. Nielsen, Phys. Lett. B 368, 96 (1996). hep-ph/9511371

    ADS  Google Scholar 

  105. L.V. Laperashvili, Yad. Fiz. 57, 501 (1994) [Phys. At. Nucl. 57, 471 (1994)]

    Google Scholar 

  106. C.R. Das, L.V. Laperashvili, Int. J. Mod. Phys. A 20, 5911 (2005). hep-ph/0503138

    MATH  MathSciNet  ADS  Google Scholar 

  107. S. Kachru, R. Kallosh, A. Linde, S.P. Trivedi, Phys. Rev. D 68, 046005 (2003). hep-th/0301240

    MathSciNet  ADS  Google Scholar 

  108. R. Bousso, J. Polchinski, J. High Energy Phys. 0006, 006 (2000). hep-th/0004134

    MathSciNet  ADS  Google Scholar 

  109. L. Susskind, hep-th/0302219

  110. R.D. Peccei, H.R. Quinn, Phys. Rev. Lett. 38, 1440 (1977)

    ADS  Google Scholar 

  111. Z. Berezhiani, O.V. Kancheli, arXiv:0808.3181 [hep-th]

  112. L. Bergstrom, arXiv:0903.4849 [hep-ph]

  113. K. Belotsky, M. Khlopov, C. Kouvaris, Phys. Rev. D 79, 083520 (2009). arXiv:0810.2022 [astro-ph]

    ADS  Google Scholar 

  114. M.Yu. Khlopov, arXiv:0806.3581 [astro-ph]

  115. M.Yu. Khlopov, arXiv:0801.0169 [astro-ph]

  116. M.Yu. Khlopov, C. Kouvaris, Phys. Rev. D 78, 065040 (2008). arXiv:0806.1191 [astro-ph]

    ADS  Google Scholar 

  117. C.-R. Chen, K. Hamaguchi, M.M. Nojiri, F. Takahashi, S. Torii, J. Cosmol. Astropart. Phys. 0905, 015 (2009). arXiv:0812.4200 [astro-ph]

    ADS  Google Scholar 

  118. Z. Berezhiani, AIP Conf. Proc. 878, 195 (2006). hep-ph/0612371

    ADS  Google Scholar 

  119. Z. Berezhiani, Eur. Phys. J. Spec. Top. 163, 271 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tureanu.

Additional information

Dedicated to the Memory of Kazuhiko Nishijima, the founder of the concept of Shadow Universe [1].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, C.R., Laperashvili, L.V. & Tureanu, A. Cosmological constant in a model with superstring-inspired E 6 unification and shadow θ-particles. Eur. Phys. J. C 66, 307–324 (2010). https://doi.org/10.1140/epjc/s10052-009-1229-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-009-1229-2

Keywords

Navigation