Skip to main content
Log in

Constraining SUSY models with Fittino using measurements before, with and beyond the LHC

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We investigate the constraints on supersymmetry (SUSY) arising from available precision measurements using a global fit approach. When interpreted within minimal supergravity (mSUGRA), the data provide significant constraints on the masses of supersymmetric particles (sparticles), which are predicted to be light enough for an early discovery at the Large Hadron Collider (LHC). We provide predicted mass spectra including, for the first time, full uncertainty bands. The most stringent constraint is from the measurement of the anomalous magnetic moment of the muon. Using the results of these fits, we investigate to which precision mSUGRA and more general MSSM parameters can be measured by the LHC experiments with three different integrated luminosities for a parameter point which approximately lies in the region preferred by current data. The impact of the already available measurements on these precisions, when combined with LHC data, is also studied. We develop a method to treat ambiguities arising from different interpretations of the data within one model and provide a way to differentiate between values of different digital parameters of a model (e.g. sign (μ) within mSUGRA). Finally, we show how measurements at a linear collider with up to 1 TeV centre-of-mass energy will help to improve precision by an order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wess, B. Zumino, Nucl. Phys. B 70, 39 (1974)

    MathSciNet  ADS  Google Scholar 

  2. H.P. Nilles, Phys. Rep. 110, 1 (1984)

    ADS  Google Scholar 

  3. H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985)

    ADS  Google Scholar 

  4. L. Alvarez-Gaume, J. Polchinski, M.B. Wise, Nucl. Phys. B 221, 495 (1983)

    ADS  Google Scholar 

  5. L.E. Ibanez, Phys. Lett. B 118, 73 (1982)

    ADS  Google Scholar 

  6. J.R. Ellis, D.V. Nanopoulos, K. Tamvakis, Phys. Lett. B 121, 123 (1983)

    ADS  Google Scholar 

  7. K. Inoue, A. Kakuto, H. Komatsu, S. Takeshita, Prog. Theor. Phys. 68, 927 (1982). Erratum: Prog. Theor. Phys. 70, 330 (1983)

    ADS  Google Scholar 

  8. A.H. Chamseddine, R.L. Arnowitt, P. Nath, Phys. Rev. Lett. 49, 970 (1982)

    ADS  Google Scholar 

  9. L. Alvarez-Gaume, M. Claudson, M.B. Wise, Nucl. Phys. B 207, 96 (1982)

    ADS  Google Scholar 

  10. M. Dine, A.E. Nelson, Phys. Rev. D 48, 1277 (1993). arXiv:hep-ph/9303230

    ADS  Google Scholar 

  11. M. Dine, A.E. Nelson, Y. Shirman, Phys. Rev. D 51, 1362 (1995). arXiv:hep-ph/9408384

    ADS  Google Scholar 

  12. M. Dine, A.E. Nelson, Y. Nir, Y. Shirman, Phys. Rev. D 53, 2658 (1996). arXiv:hep-ph/9507378

    ADS  Google Scholar 

  13. G. Weiglein et al. (LHC/LC Study Group), Phys. Rep. 426, 47 (2006). arXiv:hep-ph/0410364

    ADS  Google Scholar 

  14. R. Lafaye, T. Plehn, M. Rauch, D. Zerwas, arXiv:0709.3985 [hep-ph]

  15. P. Bechtle, K. Desch, W. Porod, P. Wienemann, Eur. Phys. J. C 46, 533 (2006). arXiv:hep-ph/0511006

    ADS  Google Scholar 

  16. C.G. Lester, M.A. Parker, M.J. White, J. High Energy Phys. 0601, 080 (2006). arXiv:hep-ph/0508143

    ADS  Google Scholar 

  17. P. Bechtle, K. Desch, P. Wienemann, Comput. Phys. Commun. 174, 47 (2006). arXiv:hep-ph/0412012

    ADS  Google Scholar 

  18. W. Porod, Comput. Phys. Commun. 153, 275 (2003). arXiv:hep-ph/0301101

    ADS  Google Scholar 

  19. P. Skands et al., J. High Energy Phys. 0407, 036 (2004). arXiv:hep-ph/0311123

    ADS  Google Scholar 

  20. B. Allanach et al., arXiv:0801.0045 [hep-ph]

  21. T. Appelquist, J. Carazzone, Phys. Rev. D 11, 2856 (1975)

    ADS  Google Scholar 

  22. A. Dobado, M.J. Herrero, S. Penaranda, Eur. Phys. J. C 7, 313 (1999). arXiv:hep-ph/9710313

    ADS  Google Scholar 

  23. W. de Boer, A. Dabelstein, W. Hollik, W. Mosle, U. Schwickerath, Z. Phys. C 75, 627 (1997). arXiv:hep-ph/9607286

    Google Scholar 

  24. W. de Boer, A. Dabelstein, W. Hollik, W. Mosle, U. Schwickerath, arXiv:hep-ph/9609209

  25. G.C. Cho, K. Hagiwara, Nucl. Phys. B 574, 623 (2000). arXiv:hep-ph/9912260

    ADS  Google Scholar 

  26. G.C. Cho, K. Hagiwara, Phys. Lett. B 514, 123 (2001). arXiv:hep-ph/0105037

    ADS  Google Scholar 

  27. J. Erler, D.M. Pierce, Nucl. Phys. B 526, 53 (1998). arXiv:hep-ph/9801238

    ADS  Google Scholar 

  28. G. Altarelli, F. Caravaglios, G.F. Giudice, P. Gambino, G. Ridolfi, J. High Energy Phys. 0106, 018 (2001). arXiv:hep-ph/0106029

    ADS  Google Scholar 

  29. A. Djouadi, M. Drees, J.L. Kneur, J. High Energy Phys. 0108, 055 (2001). arXiv:hep-ph/0107316

    ADS  Google Scholar 

  30. W. de Boer, M. Huber, C. Sander, D.I. Kazakov, Phys. Lett. B 515, 283 (2001)

    ADS  Google Scholar 

  31. W. de Boer, C. Sander, Phys. Lett. B 585, 276 (2004). arXiv:hep-ph/0307049

    ADS  Google Scholar 

  32. G. Belanger, F. Boudjema, A. Cottrant, A. Pukhov, A. Semenov, Nucl. Phys. B 706, 411 (2005). arXiv:hep-ph/0407218

    ADS  Google Scholar 

  33. J.R. Ellis, K.A. Olive, Y. Santoso, V.C. Spanos, Phys. Rev. D 69, 095004 (2004). arXiv:hep-ph/0310356

    ADS  Google Scholar 

  34. J.R. Ellis, S. Heinemeyer, K.A. Olive, G. Weiglein, J. High Energy Phys. 0502, 013 (2005). arXiv:hep-ph/0411216

    MathSciNet  ADS  Google Scholar 

  35. J.R. Ellis, D.V. Nanopoulos, K.A. Olive, Y. Santoso, Phys. Lett. B 633, 583 (2006). arXiv:hep-ph/0509331

    ADS  Google Scholar 

  36. J.R. Ellis, S. Heinemeyer, K.A. Olive, G. Weiglein, J. High Energy Phys. 0605, 005 (2006). arXiv:hep-ph/0602220

    ADS  Google Scholar 

  37. J.R. Ellis, S. Heinemeyer, K.A. Olive, A.M. Weber, G. Weiglein, J. High Energy Phys. 0708, 083 (2007). arXiv:0706.0652 [hep-ph]

    ADS  Google Scholar 

  38. E.A. Baltz, P. Gondolo, J. High Energy Phys. 0410, 052 (2004). arXiv:hep-ph/0407039

    ADS  Google Scholar 

  39. B.C. Allanach, C.G. Lester, Phys. Rev. D 73, 015013 (2006). arXiv:hep-ph/0507283

    ADS  Google Scholar 

  40. B.C. Allanach, Phys. Lett. B 635, 123 (2006). arXiv:hep-ph/0601089

    ADS  Google Scholar 

  41. B.C. Allanach, C.G. Lester, A.M. Weber, J. High Energy Phys. 0612, 065 (2006). arXiv:hep-ph/0609295

    MathSciNet  ADS  Google Scholar 

  42. B.C. Allanach, K. Cranmer, C.G. Lester, A.M. Weber, J. High Energy Phys. 0708, 023 (2007). arXiv:0705.0487 [hep-ph]

    ADS  Google Scholar 

  43. R.R. de Austri, R. Trotta, L. Roszkowski, J. High Energy Phys. 0605, 002 (2006). arXiv:hep-ph/0602028

    Google Scholar 

  44. O. Buchmueller et al., J. High Energy Phys. 0809, 117 (2008). arXiv:0808.4128 [hep-ph]

    ADS  Google Scholar 

  45. O. Buchmueller et al., Phys. Lett. B 657, 87 (2007). arXiv:0707.3447 [hep-ph]

    ADS  Google Scholar 

  46. H. Flacher, M. Goebel, J. Haller, A. Hocker, K. Moenig, J. Stelzer, Eur. Phys. J. C 60, 543 (2009). arXiv:0811.0009 [hep-ph]

    ADS  Google Scholar 

  47. ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration, SLD Collaboration, Phys. Rep. 427, 257 (2006). arXiv:hep-ex/0509008

    ADS  Google Scholar 

  48. E. Barberio et al. (Heavy Flavour Averaging Group (HFAG)), arXiv:hep-ex/0603003

  49. B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 95, 041804 (2005). arXiv:hep-ex/0407038

    ADS  Google Scholar 

  50. P. Chang, in ICHEP 2008, Philadelphia, USA, August 2008

  51. I. Adachi et al. (Belle Collaboration), arXiv:0809.3834 [hep-ex]

  52. A. Gray et al. (HPQCD Collaboration), Phys. Rev. Lett. 95, 212001 (2005). arXiv:hep-lat/0507015

    ADS  Google Scholar 

  53. M. Bona et al. (UTfit Collaboration), J. High Energy Phys. 0803, 049 (2008). arXiv:0707.0636 [hep-ph]

    ADS  Google Scholar 

  54. M. Antonelli et al. (FlaviaNet Working Group on Kaon Decays), arXiv:0801.1817 [hep-ph]

  55. A.V. Artamonov et al. (E949 Collaboration), Phys. Rev. Lett. 101, 191802 (2008). arXiv:0808.2459 [hep-ex]

    ADS  Google Scholar 

  56. G.W. Bennett et al. (Muon g-2 Collaboration), Phys. Rev. Lett. 92, 161802 (2004). arXiv:hep-ex/0401008

    ADS  Google Scholar 

  57. T. Moroi, Phys. Rev. D 53, 6565 (1996). Erratum: Phys. Rev. D 56 (1997) 4424, arXiv:hep-ph/9512396

    ADS  Google Scholar 

  58. G. Degrassi, G.F. Giudice, Phys. Rev. D 58, 053007 (1998). arXiv:hep-ph/9803384

    ADS  Google Scholar 

  59. S. Heinemeyer, D. Stockinger, G. Weiglein, Nucl. Phys. B 690, 62 (2004). arXiv:hep-ph/0312264

    ADS  Google Scholar 

  60. S. Heinemeyer, D. Stockinger, G. Weiglein, Nucl. Phys. B 699, 103 (2004). arXiv:hep-ph/0405255

    ADS  Google Scholar 

  61. R. Barate et al. (LEP Working Group for Higgs boson searches, the LEP Collaborations), Phys. Lett. B 565, 61 (2003). arXiv:hep-ex/0306033

    ADS  Google Scholar 

  62. S. Schael et al. (LEP Working Group for Higgs boson searches, the LEP Collaborations), Eur. Phys. J. C 47, 547 (2006). arXiv:hep-ex/0602042

    ADS  Google Scholar 

  63. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133 (2003). arXiv:hep-ph/0212020

    ADS  Google Scholar 

  64. J. Dunkley et al. (WMAP Collaboration), Astrophys. J. Suppl. 180, 306 (2009). arXiv:0803.0586 [astro-ph]

    ADS  Google Scholar 

  65. C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008)

    ADS  Google Scholar 

  66. Tevatron Electroweak Working Group, CDF Collaboration, D0 Collaboration, arXiv:0808.1089 [hep-ex]

  67. J. Charles et al. (CKMfitter Group), Eur. Phys. J. C 41, 1 (2005). arXiv:hep-ph/0406184

    ADS  Google Scholar 

  68. J.Z. Bai et al. (BES Collaboration), Phys. Rev. Lett. 88, 101802 (2002). arXiv:hep-ex/0102003

    ADS  Google Scholar 

  69. B. Aubert (The BABAR Collaboration), arXiv:0908.3589 [hep-ex]

  70. G. Venanzoni (KLOE Collaboration), Nucl. Phys. Proc. Suppl. 189, 233 (2009)

    ADS  Google Scholar 

  71. B.E. Lautrup, A. Peterman, E. de Rafael, Phys. Rep. 3, 193 (1972)

    ADS  Google Scholar 

  72. M. Davier, S. Eidelman, A. Hocker, Z. Zhang, Eur. Phys. J. C 31, 503 (2003). arXiv:hep-ph/0308213

    ADS  Google Scholar 

  73. S. Ghozzi, F. Jegerlehner, Phys. Lett. B 583, 222 (2004). arXiv:hep-ph/0310181

    ADS  Google Scholar 

  74. S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343 (1999). arXiv:hep-ph/9812472

    ADS  Google Scholar 

  75. J.R. Ellis, S. Heinemeyer, K.A. Olive, G. Weiglein, Phys. Lett. B 515, 348 (2001). arXiv:hep-ph/0105061

    ADS  Google Scholar 

  76. S. Ambrosanio, A. Dedes, S. Heinemeyer, S. Su, G. Weiglein, Nucl. Phys. B 624, 3 (2002). arXiv:hep-ph/0106255

    ADS  Google Scholar 

  77. CDF Collaboration, D0 Collaboration, arXiv:0903.4001 [hep-ex]

  78. B.C. Allanach et al., in Proc. of the APS/DPF/DPB Summer Study on the Future of Particle Physics (Snowmass 2001), ed. by N. Graf, Snowmass, Colorado, 30 Jun–21 Jul 2001, p. 125. arXiv:hep-ph/0202233

  79. B.K. Gjelsten, D.J. Miller, P. Osland, J. High Energy Phys. 0412, 003 (2004). arXiv:hep-ph/0410303

    ADS  Google Scholar 

  80. H. Bachacou, I. Hinchliffe, F.E. Paige, Phys. Rev. D 62, 015009 (2000). arXiv:hep-ph/9907518

    ADS  Google Scholar 

  81. B.C. Allanach, C.G. Lester, M.A. Parker, B.R. Webber, J. High Energy Phys. 0009, 004 (2000). arXiv:hep-ph/0007009

    ADS  Google Scholar 

  82. C.G. Lester, D.J. Summers, Phys. Lett. B 463, 99 (1999). arXiv:hep-ph/9906349

    ADS  Google Scholar 

  83. A. Barr, C. Lester, P. Stephens, J. Phys. G 29, 2343 (2003). arXiv:hep-ph/0304226

    ADS  Google Scholar 

  84. M.M. Nojiri, G. Polesello, D.R. Tovey, arXiv:hep-ph/0312318

  85. M.M. Nojiri, G. Polesello, D.R. Tovey, arXiv:hep-ph/0312317

  86. M. Hohlfeld, On the determination of Higgs parameters in the ATLAS experiment at the LHC, in ATLAS Note ATL-PHYS-2001-004. Available at http://cdsweb.cern.ch/record/684112?ln=en,

  87. B.C. Allanach, Comput. Phys. Commun. 143, 305 (2002). arXiv:hep-ph/0104145

    ADS  Google Scholar 

  88. M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, J. High Energy Phys. 0702, 047 (2007). arXiv:hep-ph/0611326

    ADS  Google Scholar 

  89. S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76 (2000). arXiv:hep-ph/9812320

    ADS  Google Scholar 

  90. G. Isidori, F. Mescia, P. Paradisi, D. Temes, Phys. Rev. D 75, 115019 (2007). arXiv:hep-ph/0703035

    ADS  Google Scholar 

  91. G. Isidori, P. Paradisi, Phys. Lett. B 639, 499 (2006). arXiv:hep-ph/0605012

    ADS  Google Scholar 

  92. F. Mahmoudi, arXiv:0808.3144 [hep-ph]

  93. F. Mahmoudi, Comput. Phys. Commun. 178, 745 (2008). arXiv:0710.2067 [hep-ph]

    ADS  Google Scholar 

  94. S. Heinemeyer, W. Hollik, D. Stockinger, A.M. Weber, G. Weiglein, J. High Energy Phys. 0608, 052 (2006). arXiv:hep-ph/0604147

    ADS  Google Scholar 

  95. S. Heinemeyer, W. Hollik, A.M. Weber, G. Weiglein, J. High Energy Phys. 0804, 039 (2008). arXiv:0710.2972 [hep-ph]

    ADS  Google Scholar 

  96. G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. 176, 367 (2007). arXiv:hep-ph/0607059

    ADS  Google Scholar 

  97. G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. 174, 577 (2006). arXiv:hep-ph/0405253

    ADS  Google Scholar 

  98. G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. 149, 103 (2002). arXiv:hep-ph/0112278

    ADS  Google Scholar 

  99. B.C. Allanach, S. Kraml, W. Porod, J. High Energy Phys. 0303, 016 (2003). arXiv:hep-ph/0302102

    ADS  Google Scholar 

  100. J.A. Aguilar-Saavedra et al., Eur. Phys. J. C 46, 43 (2006). arXiv:hep-ph/0511344

    ADS  Google Scholar 

  101. F. James, M. Roos, Comput. Phys. Commun. 10, 343 (1975)

    ADS  Google Scholar 

  102. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

    ADS  Google Scholar 

  103. D. MacKay, Information Theory, Inference, and Learning Algorithms (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  104. S.S. AbdusSalam, B.C. Allanach, F. Quevedo, F. Feroz, M. Hobson, arXiv:0904.2548 [hep-ph]

  105. R.J. Barlow, Statistics (Wiley, New York, 1989)

    Google Scholar 

  106. G. Aad et al. (The ATLAS Collaboration), arXiv:0901.0512

  107. G.L. Bayatian et al. (CMS Collaboration), J. Phys. G 34, 995 (2007)

    ADS  Google Scholar 

  108. LEP Collaborations, Tevatron Collaborations, SLD Collaboration, arXiv:0811.4682 [hep-ex]

  109. A. Heister et al. (ALEPH Collaboration), Phys. Lett. B 583, 247 (2004)

    ADS  Google Scholar 

  110. LEP Collaborations, LEPSUSYWG/04-07.1, http://lepsusy.web.cern.ch/lepsusy/www/lsp_cmssm_summer04/cMSSM_final.html. Obtained 06/22/2009

  111. D. Stockinger, Nucl. Phys. Proc. Suppl. 181–182, 32 (2008)

    Google Scholar 

  112. M. Passera, Pramana 72, 195 (2009)

    ADS  Google Scholar 

  113. F. Jegerlehner, A. Nyffeler, Phys. Rep. 477, 1 (2009). arXiv:0902.3360 [hep-ph]

    ADS  Google Scholar 

  114. M. Davier et al., arXiv:0906.5443 [hep-ph]

  115. J.A. Aguilar-Saavedra et al. (ECFA/DESY LC Physics Working Group), arXiv:hep-ph/0106315

  116. V.M. Abazov et al. (D0 Collaboration), arXiv:0901.0646 [hep-ex]

  117. T. Aaltonen et al. (CDF Collaboration), arXiv:0903.2618 [hep-ex]

  118. A. Heister et al. (ALEPH Collaboration), Phys. Lett. B 526, 206 (2002). arXiv:hep-ex/0112011

    ADS  Google Scholar 

  119. J. Abdallah et al. (DELPHI Collaboration), Eur. Phys. J. C 31, 421 (2004). arXiv:hep-ex/0311019

    Google Scholar 

  120. P. Achard et al. (L3 Collaboration), Phys. Lett. B 580, 37 (2004). arXiv:hep-ex/0310007

    ADS  Google Scholar 

  121. G. Abbiendi et al. (OPAL Collaboration), Eur. Phys. J. C 32, 453 (2004). arXiv:hep-ex/0309014

    ADS  Google Scholar 

  122. E. Pierpaoli, S. Borgani, A. Masiero, M. Yamaguchi, Phys. Rev. D 57, 2089 (1998). arXiv:astro-ph/9709047

    ADS  Google Scholar 

  123. M. Viel, J. Lesgourgues, M.G. Haehnelt, S. Matarrese, A. Riotto, Phys. Rev. D 71, 063534 (2005). arXiv:astro-ph/0501562

    ADS  Google Scholar 

  124. F. Staub, W. Porod, J. Niemeyer, arXiv:0907.0530 [hep-ph]

  125. R.L. Culbertson et al. (SUSY Working Group Collaboration), arXiv:hep-ph/0008070

  126. P. Fayet, Phys. Lett. B 84, 416 (1979)

    ADS  Google Scholar 

  127. P. Fayet, Phys. Lett. B 70, 461 (1977)

    ADS  Google Scholar 

  128. G.A. Blair, W. Porod, P.M. Zerwas, Eur. Phys. J. C 27, 263 (2003). arXiv:hep-ph/0210058

    ADS  Google Scholar 

  129. J.L. Feng, J. Phys. G 32, R1 (2006). arXiv:astro-ph/0511043

    ADS  Google Scholar 

  130. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, arXiv:0811.4169 [hep-ph]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Bechtle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bechtle, P., Desch, K., Uhlenbrock, M. et al. Constraining SUSY models with Fittino using measurements before, with and beyond the LHC. Eur. Phys. J. C 66, 215–259 (2010). https://doi.org/10.1140/epjc/s10052-009-1228-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-009-1228-3

Keywords

Navigation