Skip to main content
Log in

The interplay between “low” and “high” energy CP-violation in leptogenesis

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We analyse, within the “flavoured” leptogenesis scenario of baryon asymmetry generation, the interplay of “low energy” CP-violation, originating from the PMNS neutrino mixing matrix U, and “high energy” CP-violation, which can be present in the matrix of neutrino Yukawa couplings, λ, and can manifest itself only in “high” energy scale processes. The type I see-saw model with three heavy right-handed Majorana neutrinos having a hierarchical spectrum is considered. The “orthogonal” parameterisation of the matrix of neutrino Yukawa couplings, which involves a complex orthogonal matrix R, is employed. In this approach the matrix R is the source of “high energy” CP-violation. Results for normal hierarchical (NH) and inverted hierarchical (IH) light neutrino mass spectrum are derived in the case of decoupling of the heaviest right-handed Majorana neutrino. It is shown that taking into account the contribution to Y B due to the CP-violating phases in the neutrino mixing matrix U can change drastically the predictions for Y B , obtained assuming that only “high energy” CP-violation from the R-matrix is operative in leptogenesis. In the case of the IH spectrum, in particular, there exist significant regions in the corresponding parameter space where the purely “high energy” contribution in Y B plays a subdominant role in the production of baryon asymmetry compatible with the observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Fukugita, T. Yanagida, Phys. Lett. B 174, 45 (1986)

    Article  ADS  Google Scholar 

  2. V.A. Kuzmin, V.A. Rubakov, M.E. Shaposhnikov, Phys. Lett. B 155, 36 (1985)

    Article  ADS  Google Scholar 

  3. W. Buchmüller, P. Di Bari, M. Plümacher, Nucl. Phys. B 643, 367 (2002)

    Article  ADS  Google Scholar 

  4. W. Buchmüller, P. Di Bari, M. Plümacher, Ann. Phys. 315, 305 (2005)

    Article  MATH  ADS  Google Scholar 

  5. G.F. Giudice , Nucl. Phys. B 685, 89 (2004)

    Article  ADS  Google Scholar 

  6. H.B. Nielsen, Y. Takanishi, Phys. Lett. B 507, 241 (2001)

    Article  ADS  Google Scholar 

  7. W. Buchmüller, D. Wyler, Phys. Lett. B 521, 291 (2001)

    Article  ADS  Google Scholar 

  8. J. Ellis, M. Raidal, T. Yanagida, Phys. Lett. B 546, 228 (2002)

    Article  ADS  Google Scholar 

  9. S. Davidson, A. Ibarra, Nucl. Phys. B 648, 345 (2003)

    Article  ADS  Google Scholar 

  10. T. Endoh, T. Morozumi, Z.H. Xiong, Prog. Theor. Phys. 111, 123 (2004)

    Article  MATH  ADS  Google Scholar 

  11. M. Hirsch, S.F. King, Phys. Rev. D 64, 113005 (2001)

    Article  ADS  Google Scholar 

  12. G.C. Branco , Nucl. Phys. B 640, 202 (2002)

    Article  ADS  Google Scholar 

  13. J. Ellis, M. Raidal, Nucl. Phys. B 643, 229 (2002)

    Article  ADS  Google Scholar 

  14. M.N. Rebelo, Phys. Rev. D 67, 013008 (2003)

    Article  ADS  Google Scholar 

  15. S. Pascoli, S.T. Petcov, W. Rodejohann, Phys. Rev. D 68, 093007 (2003)

    Article  ADS  Google Scholar 

  16. S.T. Petcov, W. Rodejohann, T. Shindou, Y. Takanishi, Nucl. Phys. B 739, 208 (2006)

    Article  ADS  Google Scholar 

  17. S. Pascoli, S.T. Petcov, A. Riotto, Phys. Rev. D 75, 083511 (2007)

    Article  ADS  Google Scholar 

  18. S. Pascoli, S.T. Petcov, A. Riotto, Nucl. Phys. B 774, 1 (2007)

    Article  ADS  Google Scholar 

  19. S. Antusch, S.F. King, A. Riotto, J. Child Adolesc. Psychopharmacol. 0611, 011 (2006)

    Google Scholar 

  20. G.C. Branco , J. High Energy Phys. 09, 004 (2007)

    Article  ADS  Google Scholar 

  21. B. Pontecorvo, Z. Eksp. Teor. Fiz. 33, 549 (1957)

    Google Scholar 

  22. B. Pontecorvo, Z. Eksp. Teor. Fiz. 34, 247 (1958)

    Google Scholar 

  23. B. Pontecorvo, Z. Eksp. Teor. Fiz. 53, 1717 (1967)

    Google Scholar 

  24. Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28, 870 (1962)

    Article  MATH  ADS  Google Scholar 

  25. R. Barbieri, P. Creminelli, A. Strumia, N. Tetradis, Nucl. Phys. B 575, 61 (2000)

    Article  ADS  Google Scholar 

  26. H.B. Nielsen, Y. Takanishi, Nucl. Phys. B 636, 305 (2002)

    Article  ADS  Google Scholar 

  27. A. Abada , J. Child Adolesc. Psychopharmacol. 0604, 004 (2006)

    Google Scholar 

  28. E. Nardi, Y. Nir, E. Roulet, J. Racker, J. High Energy Phys. 0601, 164 (2006)

    Article  ADS  Google Scholar 

  29. A. Abada , J. High Energy Phys. 0609, 010 (2006)

    Article  ADS  Google Scholar 

  30. E. Molinaro, S.T. Petcov, T. Shindou, Y. Takanishi, Nucl. Phys. B 797, 93 (2008)

    Article  MATH  ADS  Google Scholar 

  31. S. Blanchet, P. Di Bari, J. Child Adolesc. Psychopharmacol. 0703, 018 (2007)

    Google Scholar 

  32. G.C. Branco, R. Gonzalez Felipe, F.R. Joaquim, Phys. Lett. B 645, 432 (2007)

    Article  ADS  Google Scholar 

  33. A. Aniusimov, S. Blanchet, P. Di Bari, arXiv:0707.3024 [hep-ph]

  34. S. Blanchet, P. Di Bari, G.G. Raffelt, J. Child Adolesc. Psychopharmacol. 0703, 012 (2007)

    Google Scholar 

  35. P. Minkowski, Phys. Lett. B 67, 421 (1977)

    Article  ADS  Google Scholar 

  36. M. Gell-Mann, P. Ramond, R. Slansky, in Proceedings of the Supergravity Stony Brook Workshop, New York 1979, ed. by P. Van Nieuwenhuizen, D. Freedman

  37. T. Yanagida, in Proceedings of the Workshop on Unified Theories and Baryon Number in the Universe, Tsukuba, Japan 1979, ed. by A. Sawada, A. Sugamoto

  38. R.N. Mohapatra, G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980)

    Article  ADS  Google Scholar 

  39. S.T. Petcov, Nucl. Phys. B (Proc. Suppl.) 143, 159 (2005). hep-ph/0412410

    Article  ADS  Google Scholar 

  40. V. Lobashev , Nucl. Phys. A 719, 153c (2003)

    Article  ADS  Google Scholar 

  41. K. Eitel , Nucl. Phys. B (Proc. Suppl.) 143, 197 (2005)

    Article  ADS  Google Scholar 

  42. S. Hannestad, H. Tu, Y.Y.Y. Wong, J. Child Adolesc. Psychopharmacol. 0606, 025 (2006)

    Google Scholar 

  43. J.A. Casas, A. Ibarra, Nucl. Phys. B 618, 171 (2001)

    Article  MATH  ADS  Google Scholar 

  44. S.M. Bilenky, J. Hosek, S.T. Petcov, Phys. Lett. B 94, 495 (1980)

    Article  ADS  Google Scholar 

  45. P. Langacker , Nucl. Phys. B 282, 589 (1987)

    Article  ADS  Google Scholar 

  46. S.M. Bilenky, S.T. Petcov, Rev. Mod. Phys. 59, 67 (1987)

    Article  ADS  Google Scholar 

  47. P.I. Krastev, S.T. Petcov, Phys. Lett. B 205, 84 (1988)

    Article  ADS  Google Scholar 

  48. C. Albright et al., physics/0411123

  49. Y. Itow et al., hep-ex/0106019

  50. D.S. Ayres et al., hep-ex/0503053

  51. A. Bandyopadhyay et al., arXiv:0710.4947

  52. S.T. Petcov, T. Shindou, hep-ph/0605151

  53. S.M. Bilenky, S. Pascoli, S.T. Petcov, Phys. Rev. D 64, 113003 (2001)

    Article  ADS  Google Scholar 

  54. S.T. Petcov, New J. Phys. 6, 109 (2004). http://stacks.iop.org/1367-2630/6/109

    Article  ADS  Google Scholar 

  55. S.T. Petcov, Phys. Scr. T 121, 94 (2005). hep-ph/0504110

    Article  ADS  Google Scholar 

  56. S. Pascoli, S.T. Petcov, hep-ph/0308034, arXiv:0711 [hep-ph]

  57. C. Aalseth et al., hep-ph/0412300

  58. A. Morales, J. Morales, Nucl. Phys. B (Proc. Suppl.) 114, 141 (2003)

    Article  ADS  Google Scholar 

  59. S. Davidson , Phys. Rev. Lett. 99, 161801 (2007)

    Article  ADS  Google Scholar 

  60. J.A. Casas, J.R. Espinosa, A. Ibarra, I. Navarro, Nucl. Phys. B 573, 652 (2000)

    Article  ADS  Google Scholar 

  61. T. Miura, T. Shindou, E. Takasugi, Phys. Rev. D 66, 093002 (2002)

    Article  ADS  Google Scholar 

  62. S. Antusch , Phys. Lett. B 519, 238 (2001)

    Article  ADS  Google Scholar 

  63. S.T. Petcov, T. Shindou, Y. Takanishi, Nucl. Phys. B 738, 219 (2006)

    Article  ADS  Google Scholar 

  64. J. Schechter, J.W.F. Valle, Phys. Rev. D 22, 2227 (1980)

    Article  ADS  Google Scholar 

  65. M. Doi , Phys. Lett. B 102, 323 (1981)

    Article  ADS  Google Scholar 

  66. A. Bandyopadhyay , Phys. Lett. B 608, 115 (2005). arXiv:0804.4857

    Article  ADS  MathSciNet  Google Scholar 

  67. T. Schwetz, Phys. Scr. T 127, 1 (2006)

    Article  ADS  Google Scholar 

  68. G.L. Fogli , Prog. Part. Nucl. Phys. 57, 71 (2006)

    Article  ADS  Google Scholar 

  69. T. Schwetz, M. Tortola, J.W.F. Valle, arXiv:0808.2016 [hep-ph]

  70. M. Apollonio , Phys. Lett. B 466, 415 (1999)

    Article  ADS  Google Scholar 

  71. G. Engelhard, Y. Grossman, E. Nardi, Y. Nir, Phys. Rev. Lett. 99, 081802 (2007)

    Article  ADS  Google Scholar 

  72. A. Ibarra, G.G. Ross, Phys. Lett. B 591, 285 (2004)

    Article  ADS  Google Scholar 

  73. P.H. Chankowski , Nucl. Phys. B 690, 279 (2004)

    Article  MATH  ADS  Google Scholar 

  74. A. Ibarra, J. High Energy Phys. 0601, 064 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  75. P.H. Frampton, S.L. Glashow, T. Yanagida, Phys. Lett. B 548, 119 (2002)

    Article  ADS  Google Scholar 

  76. A. Strumia, M. Raidal, Phys. Lett. B 553, 72 (2003)

    Article  ADS  Google Scholar 

  77. F. Ardellier et al. (Double Chooz Collaboration), hep-ex/0606025

  78. E. Molinaro, S.T. Petcov, arXiv:0808.3534 [hep-ph]

  79. S. Davidson, J. Garayoa, F. Palorini, N. Rius, arXiv:0806.2832v3

Download references

Author information

Authors and Affiliations

Authors

Additional information

Also at Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molinaro, E., Petcov, S.T. The interplay between “low” and “high” energy CP-violation in leptogenesis. Eur. Phys. J. C 61, 93–109 (2009). https://doi.org/10.1140/epjc/s10052-009-0985-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-009-0985-3

Keywords

Navigation