Skip to main content
Log in

Recent results from parton-cascade/microscopic transport

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The parton-cascade model is a microscopic transport approach in the study of the space-time evolution of the quark–gluon plasma produced in relativistic heavy-ion collisions and its experimental manifestations. In the following, parton-cascade calculations on elliptic flow and thermalization will be discussed. Dynamical evolution is shown to be important for the production of elliptic flow including the scaling and the breaking of the scaling of elliptic flow. The degree of thermalization is estimated using both an elastic parton-cascade and a radiative transport model. A longitudinal to transverse pressure ratio of P L /P T ≈0.8 is shown to be expected in the central cell in central collisions. This provides information on viscous corrections to the ideal hydrodynamical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Pang, T.J. Schlagel, S.H. Kahana, Phys. Rev. Lett. 68, 2743 (1992)

    Article  ADS  Google Scholar 

  2. B.A. Li, C.M. Ko, Phys. Rev. C 52, 2037 (1995). arXiv:nucl-th/9505016

    Article  ADS  Google Scholar 

  3. H. Sorge, H. Stöcker, W. Greiner, Nucl. Phys. A 498, 567c (1989)

    Article  ADS  Google Scholar 

  4. S.A. Bass , Prog. Part. Nucl. Phys. 41, 255 (1998). arXiv:nucl-th/9803035

    Article  ADS  Google Scholar 

  5. K. Geiger, B. Müller, in Proceedings of the 4th Workshop on Experiments and Detectors for a Relativistic Heavy Ion Collider, Upton, New York, 2–7 July 1990

  6. K. Geiger, B. Müller, Nucl. Phys. B 369, 600 (1992)

    Article  ADS  Google Scholar 

  7. K. Geiger, Comput. Phys. Commun. 104, 70 (1997). arXiv:hep-ph/9701226

    Article  ADS  Google Scholar 

  8. S.A. Bass, B. Müller, D.K. Srivastava, Phys. Lett. B 551, 277 (2003). arXiv:nucl-th/0207042

    Article  ADS  Google Scholar 

  9. B. Zhang, Comput. Phys. Commun. 109, 193 (1998). arXiv:nucl-th/9709009

    Article  MATH  ADS  Google Scholar 

  10. D. Molnár, M. Gyulassy, Nucl. Phys. A 697, 495 (2002)

    Article  ADS  Google Scholar 

  11. D. Molnár, M. Gyulassy, Nucl. Phys. A 703, 893(E) (2002). arXiv:nucl-th/0104073

    ADS  Google Scholar 

  12. B. Zhang, C.M. Ko, B.A. Li, Z.W. Lin, Phys. Rev. C 61, 067901 (2000). arXiv:nucl-th/9907017

    Article  ADS  Google Scholar 

  13. Z. Xu, C. Greiner, Phys. Rev. C 71, 064901 (2005). arXiv:hep-ph/0406278

    Article  ADS  Google Scholar 

  14. T. Lappi, L. McLerran, Nucl. Phys. A 772, 200 (2006). arXiv:hep-ph/0602189

    Article  ADS  Google Scholar 

  15. B. Zhang, M. Gyulassy, C.M. Ko, Phys. Lett. B 455, 45 (1999). arXiv:nucl-th/9902016

    Article  ADS  Google Scholar 

  16. K.H. Ackermann (STAR Collaboration), Phys. Rev. Lett. 86, 402 (2001). arXiv:nucl-ex/0009011

    Article  ADS  Google Scholar 

  17. Z. Xu, C. Greiner, H. Stöcker, arXiv:0711.0961 [nucl-th]

  18. B. Zhang, Phys. Lett. B 580, 144 (2004). arXiv:nucl-th/0309015

    Article  ADS  Google Scholar 

  19. D. Molnár, P. Huovinen, arXiv:0806.1367 [nucl-th]

  20. G. Ferini, M. Colonna, M. Di Toro, V. Greco, arXiv:0805.4814 [nucl-th]

  21. B. Alver (PHOBOS Collaboration), Phys. Rev. Lett. 98, 242302 (2007). arXiv:nucl-ex/0610037

    Article  ADS  Google Scholar 

  22. D. Teaney, J. Lauret, E.V. Shuryak, Phys. Rev. Lett. 86, 4783 (2001). arXiv:nucl-th/0011058

    Article  ADS  Google Scholar 

  23. P. Huovinen, P.F. Kolb, U.W. Heinz, P.V. Ruuskanen, S.A. Voloshin, Phys. Lett. B 503, 58 (2001). arXiv:hep-ph/0101136

    Article  ADS  Google Scholar 

  24. P.F. Kolb, U.W. Heinz, P. Huovinen, K.J. Eskola, K. Tuominen, Nucl. Phys. A 696, 197 (2001). arXiv:hep-ph/0103234

    Article  ADS  Google Scholar 

  25. T. Hirano, U.W. Heinz, D. Kharzeev, R. Lacey, Y. Nara, Phys. Lett. B 636, 299 (2006). arXiv:nucl-th/0511046

    Article  ADS  Google Scholar 

  26. U.W. Heinz, arXiv:nucl-th/0512049

  27. P. Danielewicz, M. Gyulassy, Phys. Rev. D 31, 53 (1985)

    Article  ADS  Google Scholar 

  28. P. Romatschke, U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007). arXiv:0706.1522 [nucl-th]

    Article  ADS  Google Scholar 

  29. H. Song, U.W. Heinz, Phys. Rev. C 77, 064901 (2008). arXiv:0712.3715 [nucl-th]

    Article  ADS  Google Scholar 

  30. K. Dusling, D. Teaney, Phys. Rev. C 77, 034905 (2008). arXiv:0710.5932 [nucl-th]

    Article  ADS  Google Scholar 

  31. B. Zhang, L.W. Chen, C.M. Ko, J. Phys. G 35, 065103 (2008)

    Article  ADS  Google Scholar 

  32. Z.W. Lin, S. Pal, C.M. Ko, B.A. Li, B. Zhang, Phys. Rev. C 64, 011902 (2001). arXiv:nucl-th/0011059

    Article  ADS  Google Scholar 

  33. Z.W. Lin, S. Pal, C.M. Ko, B.A. Li, B. Zhang, Nucl. Phys. A 698, 375 (2002). arXiv:nucl-th/0105044

    Article  ADS  Google Scholar 

  34. Z.W. Lin, C.M. Ko, B.A. Li, B. Zhang, S. Pal, Phys. Rev. C 72, 064901 (2005). arXiv:nucl-th/0411110

    Article  ADS  Google Scholar 

  35. X.N. Wang, M. Gyulassy, Phys. Rev. D 44, 3501 (1991)

    Article  ADS  Google Scholar 

  36. T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994)

    Article  ADS  Google Scholar 

  37. V. Greco, C.M. Ko, P. Levai, Phys. Rev. Lett. 90, 202302 (2003). arXiv:nucl-th/0301093

    Article  ADS  Google Scholar 

  38. V. Greco, C.M. Ko, P. Levai, Phys. Rev. C 68, 034904 (2003). arXiv:nucl-th/0305024

    Article  ADS  Google Scholar 

  39. B.A. Li, A.T. Sustich, B. Zhang, C.M. Ko, Int. J. Mod. Phys. E 10, 267 (2001)

    Article  ADS  Google Scholar 

  40. Z.W. Lin, C.M. Ko, Phys. Rev. C 65, 034904 (2002). arXiv:nucl-th/0108039

    Article  ADS  Google Scholar 

  41. Z.W. Lin, C.M. Ko, S. Pal, Phys. Rev. Lett. 89, 152301 (2002). arXiv:nucl-th/0204054

    Article  ADS  Google Scholar 

  42. S. Pal, C.M. Ko, Z.W. Lin, Nucl. Phys. A 707, 525 (2002). arXiv:nucl-th/0202086

    Article  ADS  Google Scholar 

  43. L.W. Chen, C.M. Ko, Z.W. Lin, Phys. Rev. C 69, 031901 (2004). arXiv:nucl-th/0312124

    Article  ADS  Google Scholar 

  44. L.W. Chen, V. Greco, C.M. Ko, P.F. Kolb, Phys. Lett. B 605, 95 (2005). arXiv:nucl-th/0408021

    Article  ADS  Google Scholar 

  45. L.W. Chen, C.M. Ko, Phys. Lett. B 634, 205 (2006). arXiv:nucl-th/0505044

    Article  ADS  Google Scholar 

  46. L.W. Chen, C.M. Ko, Phys. Rev. C 73, 014906 (2006). arXiv:nucl-th/0507067

    Article  ADS  Google Scholar 

  47. B. Zhang, C.M. Ko, B.A. Li, Z.W. Lin, B.H. Sa, Phys. Rev. C 62, 054905 (2000). arXiv:nucl-th/0007003

    Article  ADS  Google Scholar 

  48. B. Zhang, C.M. Ko, B.A. Li, Z.W. Lin, S. Pal, Phys. Rev. C 65, 054909 (2002). arXiv:nucl-th/0201038

    Article  ADS  Google Scholar 

  49. B. Zhang, L.W. Chen, C.M. Ko, Phys. Rev. C 72, 024906 (2005). arXiv:nucl-th/0502056

    Article  ADS  Google Scholar 

  50. L.W. Chen, C.M. Ko, Phys. Rev. C 73, 044903 (2006). arXiv:nucl-th/0602025

    Article  ADS  Google Scholar 

  51. L.V. Bravina , Phys. Rev. C 63, 064902 (2001). arXiv:hep-ph/0010172

    Article  ADS  Google Scholar 

  52. Z. Xu, C. Greiner, Phys. Rev. C 76, 024911 (2007). arXiv:hep-ph/0703233

    Article  ADS  Google Scholar 

  53. P. Huovinen, D. Molnár, arXiv:0808.0953 [nucl-th]

  54. O. Fochler, Z. Xu, C. Greiner, arXiv:0806.1169 [hep-ph]

  55. M. Gyulassy, I. Vitev, X.N. Wang, P. Huovinen, Phys. Lett. B 526, 301 (2002). arXiv:nucl-th/0109063

    Article  ADS  Google Scholar 

  56. H. van Hees, R. Rapp, Phys. Rev. C 71, 034907 (2005). arXiv:nucl-th/0412015

    Article  ADS  Google Scholar 

  57. H. van Hees, V. Greco, R. Rapp, Phys. Rev. C 73, 034913 (2006). arXiv:nucl-th/0508055

    Article  ADS  Google Scholar 

  58. G.D. Moore, D. Teaney, Phys. Rev. C 71, 064904 (2005). arXiv:hep-ph/0412346

    Article  ADS  Google Scholar 

  59. A. Adil, I. Vitev, Phys. Lett. B 649, 139 (2007). arXiv:hep-ph/0611109

    Article  ADS  Google Scholar 

  60. P.R. Sorensen, X. Dong, Phys. Rev. C 74, 024902 (2006). arXiv:nucl-th/0512042

    Article  ADS  Google Scholar 

  61. G.L. Ma , Phys. Lett. B 641, 362 (2006). arXiv:nucl-th/0601012

    Article  ADS  Google Scholar 

  62. G.L. Ma , Phys. Lett. B 647, 122 (2007). arXiv:nucl-th/0608050

    Article  ADS  Google Scholar 

  63. G.L. Ma, S. Zhang, Y.G. Ma, X.Z. Cai, J.H. Chen, C. Zhong, arXiv:0807.3987 [nucl-th]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B. Recent results from parton-cascade/microscopic transport. Eur. Phys. J. C 62, 25–29 (2009). https://doi.org/10.1140/epjc/s10052-009-0903-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-009-0903-8

PACS

Navigation