Skip to main content
Log in

Lowest-lying tetra-quark hadrons in anisotropic lattice QCD

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We present a detailed study of the lowest-lying \(q^{2}\bar{q}^{2}\) hadrons in quenched improved anisotropic lattice QCD. Using the π π and diquark–antidiquark local and smeared operators, we attempt to isolate the signal for I(J P)=0(0+),2(0+) and 1(1+) states in two flavour QCD. In the chiral limit of the light-quark mass region, the lowest scalar 4q state is found to have a mass, m I=04q =927(12) MeV, which is slightly lower than the experimentally observed f 0(980). The results from our variational analysis do not indicate a signature of a tetraquark resonance in I=1 and I=2 channels. After the chiral extrapolation the lowest 1(1+) state is found to have a mass m I=14q =1358(28) MeV. We analysed the static 4q potential extracted from a tetraquark Wilson loop and illustrated the behaviour of the 4q state as a bound state, unbinding at some critical diquark separation. From our analysis we conclude that the scalar 4q system appears as a two-pion scattering state and that there is no spatially-localised 4q state in the light-quark mass region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. LEPS Collaboration (T. Nakano et al.), Phys. Rev. Lett. 91, 012002 (2003)

    Article  ADS  Google Scholar 

  2. DIANA Collaboration (V. Barmin et al.), Phys. Rev. Lett. 91, 252001 (2003)

    Article  Google Scholar 

  3. CLAS Collaboration (V. Kubarovsky et al.), Phys. Rev. Lett. 92, 032001 (2004)

    Article  ADS  Google Scholar 

  4. BES Collaboration (J. Bai et al.), Phys. Rev. D 70, 012004 (2004)

    Article  ADS  Google Scholar 

  5. BES Collaboration, Phys. Lett. B 598, 149 (2004)

    Article  ADS  Google Scholar 

  6. BES Collaboration, Phys. Lett. B 607, 243 (2005)

    Article  ADS  Google Scholar 

  7. BES Collaboration (M. Ablikim et al.), Phys. Lett. B 603, 138 (2004)

    Article  ADS  Google Scholar 

  8. ZEUS Collaboration, Phys. Lett. B 578, 33 (2004)

    Article  Google Scholar 

  9. Belle Collaboration (S. Choi et al.), Phys. Rev. Lett. 91, 262001 (2003)

    Article  ADS  Google Scholar 

  10. CDFII Collaboration (D. Acosta et al.), Phys. Rev. Lett. 93, 072001 (2004)

    Article  ADS  Google Scholar 

  11. BARBAR Collaboration (B. Aubert et al.), Phys. Rev. Lett. 93, 041801 (2004)

    Article  ADS  Google Scholar 

  12. BARBAR Collaboration (B. Aubert et al.), Phys. Rev. Lett. 90, 242001 (2003)

    Article  ADS  Google Scholar 

  13. F. Close, S. Godfrey, Phys. Lett. B 574, 210 (2003)

    Article  ADS  Google Scholar 

  14. F. Close, P. Page, Phys. Lett. B 578, 119 (2004)

    Article  ADS  Google Scholar 

  15. S. Pakvasa, M. Suzuki, Phys. Lett. B 579, 67 (2004)

    Article  ADS  Google Scholar 

  16. C. Wong, Phys. Rev. C 69, 055202 (2004)

    Article  ADS  Google Scholar 

  17. E. Braaten, M. Kusunoki, Phys. Rev. D 69, 074005 (2004)

    Article  ADS  Google Scholar 

  18. B. Lasscock et al., Phys. Rev. D 72, 014502 (2005) and references therein

    Article  ADS  Google Scholar 

  19. F. Oikharu et al., Phys. Rev. D 72, 074503 (2005) and references therein

    Article  Google Scholar 

  20. M. Fukugita et al., Phys. Rev. D 52, 3003 (1995)

    Article  ADS  Google Scholar 

  21. M. Alford, R. Jaffe, Nucl. Phys. B 578, 367 (2000)

    Article  ADS  Google Scholar 

  22. R. Gupta, A. Patel, S. Sharpe, Phys. Rev. D 48, 388 (1993)

    Article  ADS  Google Scholar 

  23. S. Sharpe, R. Gupta, G. Kilcup, Nucl. Phys. B 383, 309 (1992)

    Article  ADS  Google Scholar 

  24. H. Suganuma, T. Takahashi, F. Oikharu, H. Ichie, Nucl. Phys. B (Proc. Suppl.) 141, 92 (2005)

    Article  ADS  Google Scholar 

  25. C. Alexandrou, G. Koutsou, Phys. Rev. D 71, 014504 (2005)

    Article  ADS  Google Scholar 

  26. H. Suganuma, F. Oikharu, T. Takahashi, H. Ichie, Nucl. Phys. A 755, 399 (2005)

    Article  ADS  Google Scholar 

  27. H. Suganuma, K. Tsumura, N. Ishii, F. Oikharu, hep-lat/0707.3309v1

  28. R. Jaffe, F. Wilczek, Phys. Rev. Lett. 91, 232003 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  29. C. Alexandrou, A. Tsapalis, Phys. Rev. D 73, 014507 (2006)

    Article  ADS  Google Scholar 

  30. T. Chiu, T. Hsieh, Phys. Rev. D 72, 034505 (2005)

    Article  ADS  Google Scholar 

  31. M. Albanese et al., Phys. Lett. B 192, 163 (1987)

    Article  ADS  Google Scholar 

  32. C. Morningstar, M. Peardon, Phys. Rev. D 60, 034509 (1999)

    Article  ADS  Google Scholar 

  33. M. Okamoto et al. (CP-PACS Collaboration), Phys. Rev. D 65, 094508 (2002)

    Article  ADS  Google Scholar 

  34. P. Lacock et al. (UKQCD Collaboration), Phys. Rev. D 51, 6403 (1995)

    Article  ADS  Google Scholar 

  35. N. Ishii et al., Phys. Rev. D 71, 034001 (2005)

    Article  ADS  Google Scholar 

  36. D. Leinweber, A.W. Thomas, R.D. Young, Phys. Rev. Lett. 92, 242002 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mushtaq Loan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loan, M., Luo, ZH. & Lam, Y.Y. Lowest-lying tetra-quark hadrons in anisotropic lattice QCD. Eur. Phys. J. C 57, 579–587 (2008). https://doi.org/10.1140/epjc/s10052-008-0689-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-008-0689-0

PACS

Navigation