Skip to main content
Log in

Lattice cut-off effects and their reduction in studies of QCD thermodynamics at non-zero temperature and chemical potential

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We clarify the relation between the improvement of dispersion relations in the fermion sector of lattice regularized QCD and the improvement of bulk thermodynamic observables. We show that in the infinite temperature limit the cut-off dependence in dispersion relations can be eliminated up to \(\mathcal{O}\)(an) corrections, if the quark propagator is chosen to be rotationally invariant up to this order. In bulk thermodynamic observables this eliminates cut-off effects up to the same order at vanishing as well as non-vanishing chemical potential. We furthermore show that in the infinite temperature, ideal gas limit the dependence of finite cut-off corrections on the chemical potential is given by Bernoulli polynomials which are universal as they do not depend on a particular discretization scheme. We explicitly calculate leading and next-to-leading order cut-off corrections for some staggered and Wilson fermion type actions and compare these with exact evaluations of the free fermion partition functions. This also includes the chirally invariant overlap and domain wall fermion formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Symanzik, Nucl. Phys. B 226, 187 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  2. K. Symanzik, Nucl. Phys. B 226, 205 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  3. S. Naik, Nucl. Phys. B 316, 238 (1989)

    Article  ADS  Google Scholar 

  4. F. Karsch, E. Laermann, A. Peikert, Nucl. Phys. B 605, 579 (2001)

    Article  ADS  Google Scholar 

  5. B. Sheikholeslami, R. Wohlert, Nucl. Phys. B 259, 572 (1985)

    Article  ADS  Google Scholar 

  6. P. Hasenfratz, F. Niedermayer, Nucl. Phys. B 414, 785 (1994)

    Article  ADS  Google Scholar 

  7. P. Hasenfratz, S. Hauswirth, K. Holland, T. Jorg, F. Niedermayer, U. Wenger, Int. J. Mod. Phys. C 12, 691 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  8. W. Bietenholz, U.-J. Wiese, Nucl. Phys. B 464, 319 (1996)

    Article  ADS  Google Scholar 

  9. G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland, M. Lütgemeier, B. Petersson, Nucl. Phys. B 469, 419 (1996)

    Article  ADS  Google Scholar 

  10. B. Beinlich, F. Karsch, E. Laermann, A. Peikert, Eur. Phys. J. C 6, 133 (1999)

    ADS  Google Scholar 

  11. C.R. Allton, S. Ejiri, S.J. Hands, O. Kaczmarek, F. Karsch, E. Laermann, C. Schmidt, Phys. Rev. D 68, 014507 (2003)

    Article  ADS  Google Scholar 

  12. MILC Collaboration, C. Bernard et al., Phys. Rev. D 71, 034504 (2005)

    Article  ADS  Google Scholar 

  13. MILC Collaboration, C. Bernard et al., Phys. Rev. D 77, 014503 (2008)

    Article  ADS  Google Scholar 

  14. W. Bietenholz, U.-J. Wiese, Phys. Lett. B 426, 114 (1998)

    Article  ADS  Google Scholar 

  15. C. Gattringer, L. Liptak, Phys. Rev. D 76, 054502 (2007)

    Article  ADS  Google Scholar 

  16. P. Hasenfratz, F. Karsch, Phys. Lett. B 125, 308 (1983)

    Article  ADS  Google Scholar 

  17. H.-T. Elze, K. Kajantie, J. Kapusta, Nucl. Phys. B 304, 832 (1988)

    Article  ADS  Google Scholar 

  18. W. Bietenholz, R. Brower, S. Chandrasekharan, U.-J. Wiese, Nucl. Phys. Proc. Suppl. 53, 921 (1997)

    Article  ADS  Google Scholar 

  19. S. Shcheredin, E. Laermann, PoS LAT2006, 146 (2006)

    Google Scholar 

  20. D.H. Adams, Nucl. Phys. Proc. Suppl. 129/130, 513 (2004)

    Article  ADS  Google Scholar 

  21. R. Narayanan, H. Neuberger, Phys. Lett. B 302, 62 (1993)

    Article  ADS  Google Scholar 

  22. R. Narayanan, H. Neuberger, Nucl. Phys. B 443, 305 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Y. Shamir, Nucl. Phys. B 406, 90 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  24. D. Kaplan, Phys. Lett. B 417, 141 (1998)

    Article  MathSciNet  Google Scholar 

  25. S. Capitani, Phys. Rep. 382, 113 (2003), for a recent review

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. UKQCD Collaboration, G. Aarts, J. Foley, JHEP 0702, 062 (2007)

    Google Scholar 

  27. G.T. Fleming, Nucl. Phys. Proc. Suppl. 94, 393 (2001)

    Article  ADS  Google Scholar 

  28. H. Neuberger, Phys. Rev. D 57, 5417 (1998)

    Article  ADS  Google Scholar 

  29. R.G. Edwards, U.M. Heller, Phys. Rev. D 63, 094505 (2001)

    Article  ADS  Google Scholar 

  30. N. Christ, private communication.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Laermann.

Additional information

PACS

11.15.Ha; 11.10.Wx; 12.38.Gc; 12.38.Mh

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hegde, P., Karsch, F., Laermann, E. et al. Lattice cut-off effects and their reduction in studies of QCD thermodynamics at non-zero temperature and chemical potential. Eur. Phys. J. C 55, 423–437 (2008). https://doi.org/10.1140/epjc/s10052-008-0613-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-008-0613-7

Keywords

Navigation