Skip to main content

Advertisement

Log in

Effective field theory approach to light propagation in an external magnetic field

The European Physical Journal C Aims and scope Submit manuscript

Abstract

The recent PVLAS experiment observed rotation of polarization and ellipticity when a linearly polarized laser beam passes through a transverse magnetic field. The phenomenon cannot be explained in conventional QED. We attempt to accommodate the result by employing an effective theory for the electromagnetic field alone. No new particles with a mass of order the laser frequency or below are assumed. To quartic terms in the field strength, a parity-violating term appears besides the two ordinary terms. The rotation of polarization and ellipticity are computed for parity-asymmetric and -symmetric experimental set-ups. While rotation occurs in an ideal asymmetric case and has the same magnitude as ellipticity, it disappears in a symmetric set-up like PVLAS. This would mean that we have to appeal to some low-mass new particles with nontrivial interactions with photons to understand the PVLAS result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. W. Heisenberg, H. Euler, Z. Phys. 98, 714 (1936)

    Article  MATH  ADS  Google Scholar 

  2. J. Schwinger, Phys. Rev. 82, 664 (1951)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. S.L. Adler, J.N. Bahcall, C.G. Callan, M.N. Rosenbluth, Phys. Rev. Lett. 25, 1061 (1970)

    Article  ADS  Google Scholar 

  4. S.L. Adler, Ann. Phys. (New York) 67, 599 (1971)

    Article  ADS  Google Scholar 

  5. E. Iacopini, E. Zavattini, Phys. Lett. 85B, 151 (1979)

    ADS  Google Scholar 

  6. PVLAS Collaboration, E. Zavattini et al., Phys. Rev. Lett. 96, 110406 (2006)

    Article  ADS  Google Scholar 

  7. PVLAS Collaboration, E. Zavattini et al., Nucl. Phys. Proc. Suppl. 164, 264 (2007)

    Article  ADS  Google Scholar 

  8. S.L. Adler, J. Phys. A 40, F143 (2007)

    Article  MATH  ADS  Google Scholar 

  9. S. Biswas, K. Melnikov, Phys. Rev. D 75, 053003 (2007)

    Article  ADS  Google Scholar 

  10. P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983)

    Article  ADS  Google Scholar 

  11. P. Sikivie, Phys. Rev. Lett. 52, 695 (1984) (Erratum)

    Article  ADS  Google Scholar 

  12. L. Maiani, R. Petronzio, E. Zavattini, Phys. Lett. B 175, 359 (1986)

    Article  ADS  Google Scholar 

  13. G. Raffelt, L. Stodolsky, Phys. Rev. D 37, 1237 (1988)

    Article  ADS  Google Scholar 

  14. G. Raffelt, J. Phys. A 40, 6607 (2007)

    Article  MATH  ADS  Google Scholar 

  15. CAST Collaboration, K. Zioutas et al., Phys. Rev. Lett. 94, 121301 (2005)

    Article  ADS  Google Scholar 

  16. E. Masso, J. Redondo, JCAP 0509, 015 (2005)

    ADS  Google Scholar 

  17. P. Jain, S. Mandal, Int. J. Mod. Phys. D 15, 2095 (2006)

    Article  MATH  ADS  Google Scholar 

  18. J. Jaeckel et al., Phys. Rev. D 75, 013004 (2007)

    Article  ADS  Google Scholar 

  19. A.K. Ganguly, P. Jain, S. Mandal, S. Stokes, Phys. Rev. D 76, 025026 (2007)

    Article  ADS  Google Scholar 

  20. E. Masso, J. Redondo, Phys. Rev. Lett. 97, 151802 (2006)

    Article  ADS  Google Scholar 

  21. R.N. Mohapatra, S. Nasri, Phys. Rev. Lett. 98, 050402 (2007)

    Article  ADS  Google Scholar 

  22. H. Gies, J. Jaeckel, A. Ringwald, Phys. Rev. Lett. 97, 140402 (2006)

    Article  ADS  Google Scholar 

  23. M. Ahlers, H. Gies, J. Jaeckel, A. Ringwald, Phys. Rev. D 75, 035011 (2007)

    Article  ADS  Google Scholar 

  24. K. Van Bibber et al., Phys. Rev. Lett. 59, 759 (1987)

    Article  ADS  Google Scholar 

  25. G. Ruoso et al., Z. Phys. C 56, 505 (1992)

    Article  ADS  Google Scholar 

  26. BFRT Collaboration, R. Cameron et al., Phys. Rev. D 47, 3707 (1993)

    Article  ADS  Google Scholar 

  27. R. Rabadan, A. Ringwald, K. Sigurdson, Phys. Rev. Lett. 96, 110407 (2006)

    Article  ADS  Google Scholar 

  28. M. Fairbairn, T. Rashba, S. Troitsky, Phys. Rev. Lett. 98, 201801 (2007)

    Article  ADS  Google Scholar 

  29. P. Sikivie, D.B. Tanner, K. van Bibber, Phys. Rev. Lett. 98, 172002 (2007)

    Article  ADS  Google Scholar 

  30. H. Gies, PhD dissertation, Universität Tübingen (1999)

  31. S.I. Kruglov, hep-ph/0702047

  32. S.I. Kruglov, Ann. Phys. 293, 228 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liao.

Additional information

PACS

12.20.-m; 12.20.Fv; 42.25.Lc; 42.25.Ja

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, XP., Liao, Y. Effective field theory approach to light propagation in an external magnetic field. Eur. Phys. J. C 53, 635–639 (2008). https://doi.org/10.1140/epjc/s10052-007-0478-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-007-0478-1

Keywords

Navigation