Skip to main content
Log in

Associated charged Higgs and \(W\) boson production in the MSSM at the CERN large hadron collider

The European Physical Journal C Aims and scope Submit manuscript

Abstract

We investigate the viability of observing charged Higgs bosons (\(H^\pm\)) produced in association with \(W\) bosons at the CERN large hadron collider, using the leptonic decay \(H^+ \to\tau^+ \nu_\tau\) and hadronic \(W\) decay, within different scenarios of the minimal supersymmetric standard model (MSSM) with both real and complex parameters. Performing a parton level study we show how the irreducible standard model background from \(W+2\) jets can be controlled by applying appropriate cuts and find that the size of a possible signal depends on the cuts needed to suppress QCD backgrounds and misidentifications. In the standard maximal mixing scenario of the MSSM we find a viable signal for large \(\tan\beta\) and intermediate \(H^\pm\) masses (\({\sim} m_t\)) when using softer cuts (\(p_{\perp\text{miss}}\), \(p_{\perp\tau{\text{jet}}} >\) 50 GeV), whereas for harder cuts (\(p_{\perp\text{miss}}\), \(p_{\perp\tau{\text{jet}}} >\) 100 GeV) we only find a viable signal for very large \(\tan\beta\) (\(\gtrsim50\)). We have also investigated a special class of MSSM scenarios with large mass splittings among the heavy Higgs bosons where the cross-section can be resonantly enhanced by factors up to one hundred, with a strong dependence on the \(CP\)-violating phases. Even so we find that the signal after cuts remains small except for small masses (\({\lesssim} m_t\)) when using the softer cuts. Finally, in all the scenarios we have investigated we have only found small \(CP\)-asymmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. LEP Higgs Working Group for Higgs boson searches, hep-ex/0107031

  2. Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 1 (2004)

    Article  ADS  Google Scholar 

  3. R.M. Barnett, H.E. Haber, D.E. Soper, Nucl. Phys. B 306, 697 (1988)

    Article  ADS  Google Scholar 

  4. A.C. Bawa, C.S. Kim, A.D. Martin, Z. Phys. C 47, 75 (1990)

    Article  Google Scholar 

  5. F. Borzumati, J.-L. Kneur, N. Polonsky, Phys. Rev. D 60, 115011 (1999) [hep-ph/9905443]

    Article  ADS  Google Scholar 

  6. D.J. Miller, S. Moretti, D.P. Roy, W.J. Stirling, Phys. Rev. D 61, 055011 (2000) [hep-ph/9906230]

    Article  ADS  Google Scholar 

  7. J.F. Gunion, Phys. Lett. B 322, 125 (1994) [hep-ph/9312201]

    Article  ADS  Google Scholar 

  8. V.D. Barger, R.J.N. Phillips, D.P. Roy, Phys. Lett. B 324, 236 (1994) [hep-ph/9311372]

    Article  ADS  Google Scholar 

  9. S. Raychaudhuri, D.P. Roy, Phys. Rev. D 53, 4902 (1996) [hep-ph/9507388]

    Article  ADS  Google Scholar 

  10. S. Moretti, K. Odagiri, Phys. Rev. D 55, 5627 (1997) [hep-ph/9611374]

    Article  ADS  Google Scholar 

  11. D.P. Roy, Phys. Lett. B 459, 607 (1999) [hep-ph/9905542]

    Article  ADS  Google Scholar 

  12. S. Moretti, D.P. Roy, Phys. Lett. B 470, 209 (1999) [hep-ph/9909435]

    Article  ADS  Google Scholar 

  13. A. Belyaev, D. Garcia, J. Guasch, J. Sola, JHEP 06, 059 (2002) [hep-ph/0203031]

    Article  ADS  Google Scholar 

  14. C. Biscarat, M. Dosil, Charged Higgs search in top quark decays with the ATLAS detector, ATL-PHYS-2003-038, 2003.

  15. K.A. Assamagan, Y. Coadou, Acta Phys. Pol. B 33, 707 (2002)

    ADS  Google Scholar 

  16. R. Kinnunen, Study of Heavy Charged Higgs in pp→tH± with H±→τν in CMS, CMS NOTE 2000/045 (available from http://cmsdoc.cern.ch/doc/notes/docs/NOTE2000_045), 2000

  17. M. Bisset, M. Guchait, S. Moretti, Eur. Phys. J. C 19, 143 (2001) [hep-ph/0010253]

    Article  ADS  Google Scholar 

  18. M. Bisset, F. Moortgat, S. Moretti, Eur. Phys. J. C 30, 419 (2003) [hep-ph/0303093]

    Article  ADS  Google Scholar 

  19. C. Hansen, N. Gollub, K. Assamagan, T. Ekelof, Eur. Phys. J. C 44S2, 1 (2005) [hep-ph/0504216]

    Article  Google Scholar 

  20. M. Guchait, S. Moretti, JHEP 01, 001 (2002) [hep-ph/0110020]

    Article  ADS  Google Scholar 

  21. K.A. Assamagan, M. Guchait, S. Moretti, hep-ph/0402057 (2004)

  22. J. Alwall, J. Rathsman, JHEP 12, 050 (2004) [hep-ph/0409094]

    Article  ADS  Google Scholar 

  23. B. Mohn, M. Flechl, J. Alwall, ATLAS discovery potential for the Charged Higgs Boson in H+→τν decays, ATL-PHYS-PUB-2007-006, 2007

  24. D.A. Dicus, J.L. Hewett, C. Kao, T.G. Rizzo, Phys. Rev. D 40, 787 (1989)

    Article  ADS  Google Scholar 

  25. A.A. Barrientos Bendezu, B.A. Kniehl, Phys. Rev. D 59, 015009 (1999) [hep-ph/9807480]

    Article  ADS  Google Scholar 

  26. S. Moretti, K. Odagiri, Phys. Rev. D 59, 055008 (1999) [hep-ph/9809244]

    Article  ADS  Google Scholar 

  27. A.A. Barrientos Bendezu, B.A. Kniehl, Phys. Rev. D 61, 097701 (2000) [hep-ph/9909502]

    Article  ADS  Google Scholar 

  28. A.A. Barrientos Bendezu, B.A. Kniehl, Phys. Rev. D 63, 015009 (2001) [hep-ph/0007336]

    Article  ADS  Google Scholar 

  29. O. Brein, W. Hollik, S. Kanemura, Phys. Rev. D 63, 095001 (2001) [hep-ph/0008308]

    Article  ADS  Google Scholar 

  30. Y.-S. Yang, C.-S. Li, L.-G. Jin, S.H. Zhu, Phys. Rev. D 62, 095012 (2000) [hep-ph/0004248]

    Article  ADS  Google Scholar 

  31. W. Hollik, S.-H. Zhu, Phys. Rev. D 65, 075015 (2002) [hep-ph/0109103]

    Article  ADS  Google Scholar 

  32. J. Zhao, C.S. Li, Q. Li, Phys. Rev. D 72, 114008 (2005) [hep-ph/0509369]

    Article  ADS  Google Scholar 

  33. E. Asakawa, O. Brein, S. Kanemura, Phys. Rev. D 72, 055017 (2005) [hep-ph/0506249]

    Article  ADS  Google Scholar 

  34. Q.-H. Cao, S. Kanemura, C.P. Yuan, Phys. Rev. D 69, 075008 (2004) [hep-ph/0311083]

    Article  ADS  Google Scholar 

  35. H. Eberl, K. Hidaka, S. Kraml, W. Majerotto, Y. Yamada, Phys. Rev. D 62, 055006 (2000) [hep-ph/9912463]

    Article  ADS  Google Scholar 

  36. M. Carena, D. Garcia, U. Nierste, C.E.M. Wagner, Nucl. Phys. B 577, 88 (2000) [hep-ph/9912516]

    Article  ADS  Google Scholar 

  37. M. Carena, S. Heinemeyer, C.E.M. Wagner, G. Weiglein, hep-ph/0511023 (2005)

  38. A. Pilaftsis, Phys. Lett. B 435, 88 (1998) [hep-ph/9805373]

    Article  ADS  Google Scholar 

  39. A. Pilaftsis, C.E.M. Wagner, Nucl. Phys. B 553, 3 (1999) [hep-ph/9902371]

    Article  ADS  Google Scholar 

  40. A.G. Akeroyd, S. Baek, Phys. Lett. B 500, 142 (2001) [hep-ph/0008286]

    Article  ADS  Google Scholar 

  41. J.R. Ellis, J.S. Lee, A. Pilaftsis, Phys. Rev. D 70, 075010 (2004) [hep-ph/0404167]

    Article  ADS  Google Scholar 

  42. A. Pilaftsis, Nucl. Phys. B 504, 61 (1997) [hep-ph/9702393]

    Article  ADS  Google Scholar 

  43. E. Christova, H. Eberl, W. Majerotto, S. Kraml, Nucl. Phys. B 639, 263 (2002) [hep-ph/0205227]

    Article  ADS  Google Scholar 

  44. J.A. Williams, hep-ph/0505121 (2005)

  45. M. Carena, J.R. Ellis, A. Pilaftsis, C.E.M. Wagner, Nucl. Phys. B 586, 92 (2000) [hep-ph/0003180]

    Article  ADS  Google Scholar 

  46. J.S. Lee et al., Comput. Phys. Commun. 156, 283 (2004) [hep-ph/0307377]

    Article  ADS  Google Scholar 

  47. S. Heinemeyer, Eur. Phys. J. C 22, 521 (2001) [hep-ph/0108059]

    Article  ADS  Google Scholar 

  48. T. Hahn, W. Hollik, S. Heinemeyer, G. Weiglein, (2005) [hep-ph/0507009]

  49. T. Hahn, W. Hollik, S. Heinemeyer, G. Weiglein, FeynHiggs version 2.2.10, http://www.feynhiggs.de

  50. M. Frank et al., hep-ph/0611326 (2006)

  51. D. Eriksson, http://www.isv.uu.se/thep/MC/pybbwh/

  52. T. Sjöstrand et al., Comput. Phys. Commun. 135, 238 (2001) [hep-ph/0010017]

    Article  MATH  ADS  Google Scholar 

  53. T. Sjöstrand, L. Lönnblad, S. Mrenna, P. Skands, hep-ph/0308153 (2003)

  54. CTEQ, H.L. Lai et al., Eur. Phys. J. C 12, 375 (2000) [hep-ph/9903282]

    Article  ADS  Google Scholar 

  55. W.K. Tung et al., JHEP 02, 053 (2007) [hep-ph/0611254]

    Article  ADS  Google Scholar 

  56. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A.D. Polosa, JHEP 07, 001 (2003) [hep-ph/0206293]

    Article  ADS  Google Scholar 

  57. H. Murayama, I. Watanabe, K. Hagiwara, KEK-91-11

  58. T. Stelzer, W.F. Long, Comput. Phys. Commun. 81, 357 (1994) [hep-ph/9401258]

    Article  ADS  Google Scholar 

  59. F. Maltoni, T. Stelzer, JHEP 02, 027 (2003) [hep-ph/0208156]

    Article  ADS  Google Scholar 

  60. S. Jadach, J.H. Kühn, Z. Was, Comput. Phys. Commun. 64, 275 (1990)

    Article  ADS  Google Scholar 

  61. P. Golonka et al., hep-ph/0312240 (2003)

  62. D.P. Roy, Phys. Lett. B 277, 183 (1992)

    Article  ADS  Google Scholar 

  63. M. Guchait, R. Kinnunen, D.P. Roy, hep-ph/0608324 (2006)

  64. R. Brenner, private communication

  65. M. Carena, S. Heinemeyer, C.E.M. Wagner, G. Weiglein, Eur. Phys. J. C 26, 601 (2003) [hep-ph/0202167]

    Article  ADS  Google Scholar 

  66. Muon g-2, G.W. Bennett et al., Phys. Rev. Lett. 92, 161802 (2004) [hep-ex/0401008]

    Article  ADS  Google Scholar 

  67. M. Davier, W.J. Marciano, Ann. Rev. Nucl. Part. Sci. 54, 115 (2004)

    Article  ADS  Google Scholar 

  68. B.C. Regan, E.D. Commins, C.J. Schmidt, D. DeMille, Phys. Rev. Lett. 88, 071805 (2002)

    Article  ADS  Google Scholar 

  69. P.G. Harris et al., Phys. Rev. Lett. 82, 904 (1999)

    Article  ADS  Google Scholar 

  70. M.V. Romalis, W.C. Griffith, E.N. Fortson, Phys. Rev. Lett. 86, 2505 (2001) [hep-ex/0012001]

    Article  ADS  Google Scholar 

  71. T. Ibrahim, P. Nath, Phys. Rev. D 58, 111301 (1998) [hep-ph/9807501]

    Article  ADS  Google Scholar 

  72. T. Ibrahim, P. Nath, Phys. Rev. D 61, 093004 (2000) [hep-ph/9910553]

    Article  ADS  Google Scholar 

  73. A. Bartl, T. Gajdosik, W. Porod, P. Stockinger, H. Stremnitzer, Phys. Rev. D 60, 073003 (1999) [hep-ph/9903402]

    Article  ADS  Google Scholar 

  74. V.D. Barger et al., Phys. Rev. D 64, 056007 (2001) [hep-ph/0101106]

    Article  ADS  Google Scholar 

  75. S. Abel, S. Khalil, O. Lebedev, Nucl. Phys. B 606, 151 (2001) [hep-ph/0103320]

    Article  ADS  Google Scholar 

  76. S.Y. Choi, M. Drees, B. Gaissmaier, Phys. Rev. D 70, 014010 (2004) [hep-ph/0403054]

    Article  ADS  Google Scholar 

  77. M. Pospelov, A. Ritz, Ann. Phys. 318, 119 (2005) [hep-ph/0504231]

    Article  MATH  ADS  Google Scholar 

  78. K.A. Olive, M. Pospelov, A. Ritz, Y. Santoso, Phys. Rev. D 72, 075001 (2005) [hep-ph/0506106]

    Article  ADS  Google Scholar 

  79. S. Abel, O. Lebedev, JHEP 01, 133 (2006) [hep-ph/0508135]

    Article  ADS  Google Scholar 

  80. S. Yaser Ayazi, Y. Farzan, hep-ph/0605272 (2006)

  81. A. Bartl, W. Majerotto, W. Porod, D. Wyler, Phys. Rev. D 68, 053005 (2003) [hep-ph/0306050]

    Article  ADS  Google Scholar 

  82. A.G. Akeroyd, S. Baek, Phys. Lett. B 525, 315 (2002) [hep-ph/0105228]

    Article  ADS  Google Scholar 

  83. B. Mohn, N. Gollub, K.A. Assamagan, Study of the H±→W±H0 decay in a large mass splitting MSSM scenario with ATLAS, ATL-PHYS-PUB-2005-017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Eriksson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eriksson, D., Hesselbach, S. & Rathsman, J. Associated charged Higgs and \(W\) boson production in the MSSM at the CERN large hadron collider. Eur. Phys. J. C 53, 267–280 (2008). https://doi.org/10.1140/epjc/s10052-007-0453-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-007-0453-x

Keywords

Navigation