Skip to main content
Log in

Longitudinal polarisation of Λ and Λ̄ hyperons in lepton–nucleon deep-inelastic scattering

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We consider models for the spin transfers to Λ and Λ̄ hyperons produced in lepton–nucleon deep-inelastic scattering. We make predictions for longitudinal Λ and Λ̄ spin transfers for the COMPASS experiment and for HERA, and for the spin transfer to Λ hyperons produced at JLAB. We demonstrate that accurate measurements of the spin transfers to Λ and Λ̄ hyperons with COMPASS kinematics have the potential to probe the intrinsic strangeness in the nucleon. We show that a measurement of Λ̄ polarisation could provide a clean probe of the spin transfer from s̄ quarks and provides a new possibility to measure the antistrange quark distribution function. COMPASS data in a domain of x that has not been studied previously will provide valuable extra information to fix models for the nucleon spin structure. The spin transfer to Λ̄ hyperons, which could be measured by the COMPASS experiment, would provide a new tool to distinguish between the SU(6) and Burkardt–Jaffe (BJ) models for baryon spin structure. In the case of the HERA electron–proton collider experiments with longitudinally-polarised electrons, the separation between the target and current fragmentation mechanisms is more clear. It provides a complementary probe of the strange quark distribution and helps distinguish between the SU(6) and BJ models for the Λ and Λ̄ spin structure. Finally, we show that the spin transfer to Λ hyperons measured in a JLAB experiment would be dominated by the spin transfer of the intrinsic polarised-strangeness in the remnant nucleon, providing an independent way to check our model predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Brodsky, J. Ellis, M. Karliner, Phys. Lett. B 206, 309 (1988)

    Article  ADS  Google Scholar 

  2. A.V. Efremov, O.V. Teryaev, JINR preprint, E2-88-287, (1988)

  3. G. Altarelli, G.G. Ross, Phys. Lett. B 212, 391 (1988)

    Article  ADS  Google Scholar 

  4. R.D. Carlitz, J.C. Collins, A.H. Mueller, Phys. Lett. B 214, 229 (1988)

    Article  ADS  Google Scholar 

  5. S. Forte, Phys. Lett. B 224, 189 (1989)

    Article  ADS  Google Scholar 

  6. S. Forte, Nucl. Phys. B 331, 1 (1990)

    Article  ADS  Google Scholar 

  7. S. Forte, E.V. Shuryak, Nucl. Phys. B 357, 153 (1991)

    Article  ADS  Google Scholar 

  8. HERMES Collaboration, A. Airapetian et al., Phys. Rev. Lett. 84, 2584 (2000)

    Article  ADS  Google Scholar 

  9. SMC Collaboration, B. Adeva et al., Phys. Rev. D 70, 012002 (2004)

    Article  ADS  Google Scholar 

  10. COMPASS Collaboration, E.S. Ageev et al., Phys. Lett. B 633, 25 (2006)

    Article  ADS  Google Scholar 

  11. COMPASS Collaboration, G.K. Mallot, Proc. 17th International Spin Physics Symposium (SPIN06), Kyoto, arXiv:hep-ex/0612055, 2006

  12. M. Hirai, S. Kumano, N. Saito, arXiv:hep-ph/0612037 (2006)

  13. COMPASS Collaboration, V.Y. Alexakhin et al., Phys. Lett. B 647, 8 (2007)

    Article  ADS  Google Scholar 

  14. E. Leader, A.V. Sidorov, D.B. Stamenov, arXiv:hep-ph/0612360

  15. HERMES Collaboration, A. Airapetian et al., arXiv:hep-ex/0609039

  16. HERMES Collaboration, A. Airapetian et al., Phys. Rev. D 71, 012003 (2005)

    Article  ADS  Google Scholar 

  17. A.M. Kotzinian, Eur. Phys. J. C 44, 211 (2005)

    Article  ADS  Google Scholar 

  18. J. Ellis, D. Kharzeev, A.M. Kotzinian, Z. Phys. C 69, 467 (1996)

    Article  Google Scholar 

  19. NOMAD Collaboration, P. Astier et al., Nucl. Phys. B 588, 3 (2000)

    Article  ADS  Google Scholar 

  20. NOMAD Collaboration, P. Astier, Nucl. Phys. B 605, 3 (2001) [hep-ex/0103047]

    Article  ADS  Google Scholar 

  21. NOMAD Collaboration, D.V. Naumov, Acta Phys. Pol. B 33, 3791 (2002) [hep-ph/0206032]

    ADS  Google Scholar 

  22. NOMAD Collaboration, D.V. Naumov, AIP Conf. Proc. 570, 489 (2001) [hep-ph/0101325]

    Article  ADS  Google Scholar 

  23. J. Ellis, M. Karliner, D. Kharzeev, M.G. Sapozhnikov, Phys. Lett. B 353, 319 (1995)

    Article  ADS  Google Scholar 

  24. J. Ellis, M. Karliner, D. Kharzeev, M.G. Sapozhnikov, Nucl. Phys. A 673, 256 (2000)

    Article  ADS  Google Scholar 

  25. J. Ellis, A. Kotzinian, D. Naumov, Eur. Phys. J. C 25, 603 (2002)

    Article  ADS  Google Scholar 

  26. M. Burkardt, R.L. Jaffe, Phys. Rev. Lett. 70, 2537 (1993)

    Article  ADS  Google Scholar 

  27. M. Anselmino, M. Boglione, U. D’Alesio, E. Leader, F. Murgia, Phys. Lett. B 509, 246 (2001)

    Article  ADS  Google Scholar 

  28. A.M. Kotzinian, A. Bravar, D. von Harrach, Eur. Phys. J. C 2, 329 (1998)

    Article  ADS  Google Scholar 

  29. C.-X. Liu, Q.-H. Xu, Z.-T. Liang, Phys. Rev. D 64, 073004 (2001)

    Article  ADS  Google Scholar 

  30. H. Dong, J. Zhou, Z.-T. Liang, Phys. Rev. D 72, 033006 (2005)

    Article  ADS  Google Scholar 

  31. C.-X. Liu, Q.-H. Xu, Z.-T. Liang, Int. J. Mod. Phys. A 18, 1485 (2003)

    Article  ADS  Google Scholar 

  32. Z.-T. Liang, Q.-H. Xu, Phys. Rev. D 65, 113012 (2002)

    Article  Google Scholar 

  33. C.-X. Liu, Z.-T. Liang, Phys. Rev. D 62, 094001 (2000)

    Article  ADS  Google Scholar 

  34. Z.-T. Liang, C. Boros, Phys. Rev. Lett. 79, 3608 (1997)

    Article  ADS  Google Scholar 

  35. J.-J. Yang, Phys. Rev. D 65, 094035 (2002)

    Article  ADS  Google Scholar 

  36. B. Ma, I. Schmidt, J. Soffer, J. Yang, Nucl. Phys. A 703, 346 (2002)

    Article  ADS  Google Scholar 

  37. B. Ma, I. Schmidt, J. Soffer, J. Yang, Phys. Rev. D 64, 014017 (2001)

    Article  ADS  Google Scholar 

  38. B. Ma, I. Schmidt, J. Soffer, J. Yang, Phys. Rev. D 62, 114009 (2000)

    Article  ADS  Google Scholar 

  39. B. Ma, I. Schmidt, J. Soffer, J. Yang, Phys. Lett. B 488, 254 (2000)

    Article  ADS  Google Scholar 

  40. D. de Florian, M. Stratmann, W. Vogelsang, Phys. Rev. D 57, 5811 (1998)

    Article  ADS  Google Scholar 

  41. D. Ashery, H.J. Lipkin, Phys. Lett. B 469, 263 (1999)

    Article  ADS  Google Scholar 

  42. T. Sjöstrand, Comput. Phys. Commun. 39, 347 (1986)

    Article  ADS  Google Scholar 

  43. T. Sjöstrand, Comput. Phys. Commun. 43, 367 (1987)

    Article  ADS  Google Scholar 

  44. A.V. Chukanov, (2006) Ph.D. thesis, in Russian

  45. NOMAD Collaboration, P. Astier et al., Nucl. Phys. B 621, 3 (2002)

    Article  ADS  Google Scholar 

  46. A. Edin, G. Ingelman, J. Rathsman, Comput. Phys. Commun. 101, 108 (1997)

    Article  ADS  Google Scholar 

  47. H. Plothow-Besch, PDFLIB, W5051, 2000

  48. COMPASS Collaboration, M.G. Sapozhnikov, Proc. XI Workshop on High Energy Spin Physics, SPIN-05, Dubna, September 2005, arXiv:hep-ex/0602002, 2006

  49. M. Gluck, E. Reya, A. Vogt, Eur. Phys. J. C 5, 461 (1998)

    Article  ADS  Google Scholar 

  50. F. Olness et al., Eur. Phys. J. C 40, 145 (2005) [hep-ph/0312323]

    Article  ADS  Google Scholar 

  51. CCFR and NuTeV Collaborations, M. Goncharov et al., Phys. Rev. D 64, 112006 (2001)

    Article  ADS  Google Scholar 

  52. NuTeV Collaboration, M. Tzanov et al., hep-ex/0306035

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Naumov.

Additional information

PACS

13.60.Rj; 13.87.Fh; 13.88.+e; 14.40.Ev; 14.20.Jn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, J., Kotzinian, A., Naumov, D. et al. Longitudinal polarisation of Λ and Λ̄ hyperons in lepton–nucleon deep-inelastic scattering. Eur. Phys. J. C 52, 283–294 (2007). https://doi.org/10.1140/epjc/s10052-007-0381-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-007-0381-9

Keywords

Navigation