Skip to main content
Log in

Noncommutative induced gauge theory

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We consider an external gauge potential minimally coupled to a renormalisable scalar theory on 4-dimensional Moyal space and compute in position space the one-loop Yang–Mills-type effective theory generated from the integration over the scalar field. We find that the gauge-invariant effective action involves, beyond the expected noncommutative version of the pure Yang–Mills action, additional terms that may be interpreted as the gauge theory counterpart of the harmonic oscillator term, which for the noncommutative ϕ4-theory on Moyal space ensures renormalisability. The expression of a possible candidate for a renormalisable action for a gauge theory defined on Moyal space is conjectured and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.R. Douglas, N.A. Nekrasov, Rev. Mod. Phys. 73, 977 (2001) [arXiv:hep-th/0106048]

    Article  ADS  Google Scholar 

  2. R. Wulkenhaar, J. Geom. Phys. 56, 108 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Grossmann, G. Loupias, E.M. Stein, Ann. Inst. Fourier 18, 343 (1968)

    Article  Google Scholar 

  4. A. Connes, Noncommutative Geometry (Academic Press Inc., San Diego, 1994), available at http://www.alainconnes.org/downloads.html

  5. A. Connes, M. Marcolli, A Walk in the Noncommutative Garden (2006), available at http://www.alainconnes.org/downloads.html

  6. N. Seiberg, E. Witten, JHEP 9909, 032 (1999) [arXiv:hep-th/9908142]

    Article  ADS  Google Scholar 

  7. V. Schomerus, JHEP 9906, 030 (1999) [arXiv:hep-th/9903205]

    Article  ADS  Google Scholar 

  8. E. Witten, Nucl. Phys. B 268, 253 (1986)

    Article  ADS  Google Scholar 

  9. A. Connes, M.R. Douglas, A.S. Schwarz, JHEP 9802, 003 (1998) [arXiv:hep-th/9711162]

    Article  ADS  Google Scholar 

  10. V. Gayral, J.H. Jureit, T. Krajewski, R. Wulkenhaar, arXiv:hep-th/0612048

  11. J.M. Gracia-Bondía, J.C. Várilly, J. Math. Phys. 29, 869 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  12. J.C. Várilly, J.M. Gracia-Bondía, J. Math. Phys. 29, 880 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  13. S. Minwalla, M. Van Raamsdonk, N. Seiberg, JHEP 0002, 020 (2000) [arXiv:hep-th/9912072]

    Article  ADS  Google Scholar 

  14. I. Chepelev, R. Roiban, JHEP 0005, 037 (2000) [arXiv:hep-th/9911098]

    Article  ADS  Google Scholar 

  15. K.G. Wilson, J.B. Kogut, Phys. Rep. 12, 75 (1974)

    Article  ADS  Google Scholar 

  16. J. Polchinski, Nucl. Phys. B 231, 269 (1984)

    Article  ADS  Google Scholar 

  17. H. Grosse, R. Wulkenhaar, Commun. Math. Phys. 256, 305 (2005) [arXiv:hep-th/0401128]

    Article  ADS  Google Scholar 

  18. H. Grosse, R. Wulkenhaar, Commun. Math. Phys. 254, 91 (2005) [arXiv:hep-th/0305066]

    Article  ADS  Google Scholar 

  19. R. Gurau, J. Magnen, V. Rivasseau, F. Vignes-Tourneret, Commun. Math. Phys. 267, 515 (2006) [arXiv:hep-th/0512271]

    Article  ADS  Google Scholar 

  20. B. Simon, Functional Integration and Quantum Physics (Academic Press, New York, San Francisco, London, 1994)

    Google Scholar 

  21. R. Gurau, V. Rivasseau, F. Vignes-Tourneret, Ann. Inst. Henri Poincare 7, 1601 (2006) [arXiv:hep-th/0512071]

    Article  ADS  Google Scholar 

  22. E. Langmann, R.J. Szabo, K. Zarembo, JHEP 0401, 017 (2004) [arXiv:hep-th/0308043]

    Article  ADS  Google Scholar 

  23. E. Langmann, R.J. Szabo, K. Zarembo, Phys. Lett. B 569, 95 (2003) [arXiv:hep-th/0303082]

    Article  ADS  MathSciNet  Google Scholar 

  24. H. Grosse, R. Wulkenhaar, JHEP 0312, 019 (2003) [arXiv:hep-th/0307017]

    Article  ADS  Google Scholar 

  25. H. Grosse, H. Steinacker, Nucl. Phys. B 746, 202 (2006) [arXiv:hep-th/0512203]

    Article  ADS  Google Scholar 

  26. H. Grosse, H. Steinacker, JHEP 0608, 008 (2006) [arXiv:hep-th/0603052]

    Article  ADS  Google Scholar 

  27. H. Grosse, H. Steinacker, arXiv:hep-th/0607235

  28. D.J. Gross, A. Neveu, Phys. Rev. D 10, 3235 (1974)

    Article  ADS  Google Scholar 

  29. P.K. Mitter, P.H. Weisz, Phys. Rev. D 8, 4410 (1973)

    Article  ADS  Google Scholar 

  30. C. Kopper, J. Magnen, V. Rivasseau, Commun. Math. Phys. 169, 121 (1995)

    Article  ADS  Google Scholar 

  31. F. Vignes-Tourneret, arXiv:math-ph/0606069, to appear in Ann. H. Poincaré

  32. F. Vignes-Tourneret, Renormalisation des théories de champs non commutatives, arXiv:math-ph/0612014, Ph.D. thesis, Université Paris 11

  33. A. Lakhoua, F. Vignes-Tourneret, J.C. Wallet, arXiv:hep-th/0701170

  34. E.T. Akhmedov, P. DeBoer, G.W. Semenoff, JHEP 0106, 009 (2001) [arXiv:hep-th/0103199]

    Article  ADS  Google Scholar 

  35. E.T. Akhmedov, P. DeBoer, G.W. Semenoff, Phys. Rev. D 64, 065005 (2001) [arXiv:hep-th/0010003]

    Article  ADS  MathSciNet  Google Scholar 

  36. E. Langmann, R.J. Szabo, Phys. Lett. B 533, 168 (2002) [arXiv:hep-th/0202039]

    Article  ADS  MathSciNet  Google Scholar 

  37. M. Hayakawa, Phys. Lett. B 478, 394 (2000) [arXiv:hep-th/9912094]

    Article  ADS  MathSciNet  Google Scholar 

  38. A. Matusis, L. Susskind, N. Toumbas, JHEP 0012, 002 (2000) [arXiv:hep-th/0002075]

    Article  ADS  Google Scholar 

  39. H. Grosse, M. Wohlgenannt, arXiv:hep-th/0703169

  40. M. Dubois-Violette, R. Kerner, J. Madore, J. Math. Phys. 31, 323 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  41. M. Dubois-Violette, T. Masson, J. Geom. Phys. 25, 104 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  42. T. Masson, J. Geom. Phys. 31, 142 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  43. T. Masson, E. Sérié, J. Math. Phys. 46, 123503 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  44. V. Gayral, Ann. Inst. Henri Poincare 6, 991 (2005) [arXiv:hep-th/0412233]

    Article  ADS  MathSciNet  Google Scholar 

  45. A. Connes, A.H. Chamseddine, J. Geom. Phys. 57, 1 (2006) [arXiv:hep-th/0605011]

    Article  ADS  MathSciNet  Google Scholar 

  46. M. Wodzicki, Invent. Math. 75, 143 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  47. O. Piguet, S.P. Sorella, Lect. Notes Phys. M 28, 1 (1995)

    Article  Google Scholar 

  48. H. Grosse, M. Wohlgenannt, J. Phys.: Conf. Ser. 53, 764 (2006) [arXiv:hep-th/0607208]

    Google Scholar 

  49. R. Gurau, V. Rivasseau, arXiv:math-ph/0606030

  50. V. Rivasseau, A. Tanasa, arXiv:math-ph/0701034

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-C. Wallet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Goursac, A., Wallet, JC. & Wulkenhaar, R. Noncommutative induced gauge theory. Eur. Phys. J. C 51, 977–987 (2007). https://doi.org/10.1140/epjc/s10052-007-0335-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-007-0335-2

Keywords

Navigation