Skip to main content

Advertisement

Log in

Coulomb gauge approach to qq̄g hybrid mesons

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

An effective Coulomb gauge Hamiltonian, Heff, is used to calculate the light (uūg), strange (ss̄g) and charmed (cc̄g) hybrid meson spectra. For the same two parameter Heff providing glueball masses consistent with lattice results and a good description of the observed u,d,s and c quark mesons, a large-scale variational treatment predicts that the lightest hybrid has JPC=0++ and mass 2.1 GeV. The lightest exotic 1-+ state is just above 2.2 GeV, near the upper limit of lattice and flux tube predictions. These theoretical formulations all indicate that the observed 1-+ π1(1600) and, more clearly, π1(1400) are not hybrid states. The Coulomb gauge approach further predicts that in the strange and charmed sectors, respectively, the ground state hybrids have 1+- with masses 2.1 and 3.8 GeV, while the first exotic 1-+ states are at 2.4 and 4.0 GeV. Finally, using our hybrid wavefunctions and the Franck–Condon principle, a novel experimental signature is presented to assist heavy hybrid meson searches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Alde et al., Phys. Lett. B 205, 397 (1988)

    Article  ADS  Google Scholar 

  2. E852 Collaboration, D.R. Thompson et al., Phys. Rev. Lett. 79, 1630 (1997)

    Article  ADS  Google Scholar 

  3. E852 Collaboration, S.U. Chung et al., Phys. Rev. D 60, 092001 (1999)

    Article  ADS  Google Scholar 

  4. E852 Collaboration, G.S. Adams et al., Phys. Rev. Lett. 81, 5760 (1998)

    Article  ADS  Google Scholar 

  5. E852 Collaboration, S.U. Chung et al., Phys. Rev. D 65, 072001 (2002)

    Article  ADS  Google Scholar 

  6. A.R. Dzierba et al., Phys. Rev. D 73, 072001 (2006)

    Article  ADS  Google Scholar 

  7. VES Collaboration, D.V. Amelin et al., Phys. Lett. B 356, 595 (1995)

    Article  ADS  Google Scholar 

  8. A. Zaitsev, AIP Conf. Proc. 432, 461 (1998)

    Google Scholar 

  9. A. Donnachie, Y.S. Kalashnikova, Phys. Rev. D 60, 114011 (1999)

    Article  ADS  Google Scholar 

  10. Crystal Ball Collaboration, K. Karch et al., Z. Phys. C 54, 33 (1992)

    Article  Google Scholar 

  11. Crystal Barrel Collaboration, J. Adomeit et al., Z. Phys. C 71, 227 (1996)

    Article  Google Scholar 

  12. WA102 Collaboration, D. Barberis et al., Phys. Lett. B 413, 217 (1997)

    Article  ADS  Google Scholar 

  13. Y.S. Kalashnikova, Nucl. Phys. A 689, 49 (2001)

    Article  ADS  Google Scholar 

  14. F. Buisseret, V. Mathieu, arXiv:hep-ph/0607083

  15. C. Bernard et al., Phys. Rev. D 56, 7039 (1997)

    Article  ADS  Google Scholar 

  16. C. Bernard et al., Nucl. Phys. B Proc. Suppl. 73, 264 (1999)

    Article  ADS  Google Scholar 

  17. P. Lacock, K. Schilling, Nucl. Phys. B Proc. Suppl. 73, 261 (1999)

    Article  ADS  Google Scholar 

  18. J.N. Hedditch et al., Phys. Rev. D 72, 114507 (2005)

    Article  ADS  Google Scholar 

  19. X.Q. Luo, Z.H. Mei, Nucl. Phys. B Proc. Suppl. 119, 263 (2003)

    Article  MATH  ADS  Google Scholar 

  20. T. Barnes, F.E. Close, E.S. Swanson, Phys. Rev. D 52, 5242 (1995)

    Article  ADS  Google Scholar 

  21. F.E. Close, P.R. Page, Nucl. Phys. B 443, 233 (1995)

    Article  ADS  Google Scholar 

  22. K. Waidelich, Diploma Thesis, North Carolina State University (2001)

  23. T. Barnes, Ph.D. Thesis, Caltech (1977)

  24. T. Barnes, Nucl. Phys. B 158, 171 (1979)

    Article  ADS  Google Scholar 

  25. T. Barnes, F. Close, Phys. Lett. B 116, 365 (1982)

    Article  ADS  Google Scholar 

  26. M. Chanowitz, S. Sharpe, Nucl. Phys. B 222, 211 (1983)

    Article  ADS  Google Scholar 

  27. T. Barnes et al., Nucl. Phys. B 224, 241 (1983)

    Article  ADS  Google Scholar 

  28. M. Flensburg et al., Z. Phys. C 22, 293 (1984)

    Article  Google Scholar 

  29. P. Hasenfratz et al., Phys. Lett. B 95, 299 (1980)

    Article  ADS  Google Scholar 

  30. F. Iddir, L. Semlala, arXiv:hep-ph/0511086

  31. Y. Liu, X.Q. Luo, Phys. Rev. D 73, 054510 (2006)

    Article  ADS  Google Scholar 

  32. L.A. Griffiths, C. Michael, P.E.L. Rakow, Phys. Lett. B 129, 351 (1983)

    Article  ADS  Google Scholar 

  33. S. Perantonis, C. Michael, Nucl. Phys. B 347, 854 (1990)

    Article  ADS  Google Scholar 

  34. F.J. Llanes-Estrada, S.R. Cotanch, Nucl. Phys. A 697, 303 (2002)

    Article  MATH  ADS  Google Scholar 

  35. F.J. Llanes-Estrada, S.R. Cotanch, A.P. Szczepaniak, E.S. Swanson, Phys. Rev. C 70, 035202 (2004)

    Article  ADS  Google Scholar 

  36. F.J. Llanes-Estrada, P. Bicudo, S.R. Cotanch, Phys. Rev. Lett. 96, 081601 (2006)

    Article  ADS  Google Scholar 

  37. F.J. Llanes-Estrada, S.R. Cotanch, Phys. Rev. Lett. 84, 1102 (2000)

    Article  ADS  Google Scholar 

  38. G.S. Bali, K. Schilling, Phys. Rev. D 46, 2636 (1992)

    Article  ADS  Google Scholar 

  39. J. Greensite, S. Olejnik, Phys. Rev. D 67, 094503 (2003) [arXiv:hep-lat/0302018]

    Article  ADS  Google Scholar 

  40. D. Zwanziger, Phys. Rev. D 70, 094034 (2004) [arXiv:hep-ph/0312254]

    Article  ADS  Google Scholar 

  41. K. Langfeld, L. Moyaerts, Phys. Rev. D 70, 074507 (2004) [arXiv:hep-lat/0406024]

    Article  ADS  Google Scholar 

  42. E. Gubankova, C.R. Ji, S.R. Cotanch, Phys. Rev. D 62, 074001 (2000) [arXiv:hep-ph/0003289]

    Article  ADS  Google Scholar 

  43. D.G. Robertson, E.S. Swanson, A.P. Szczepaniak, C.R. Ji, S.R. Cotanch, Phys. Rev. D 59, 074019 (1999)

    Article  ADS  Google Scholar 

  44. F.J. Llanes-Estrada, S.R. Cotanch, Phys. Lett. B 504, 15 (2001)

    Article  ADS  Google Scholar 

  45. T.D. Lee, Particle Physics and Introduction to Field Theory (Harwood Academic Publishers, New York, 1990)

    Google Scholar 

  46. D. Zwanziger, Nucl. Phys. B 485, 185 (1997) and private communication

    Article  ADS  Google Scholar 

  47. A.P. Szczepaniak, E.S. Swanson, Phys. Rev. D 65, 0252012 (2002)

    Google Scholar 

  48. G.P. Lepage, J. Comput. Phys. 27, 192 (1978)

    Article  MATH  Google Scholar 

  49. G.P. Lepage, Cornell University Report CLNS (1980) 80–447 (unpublished)

  50. S. Eidelman et al., Phys. Lett. B 592, 1 (2004)

    Article  ADS  Google Scholar 

  51. A.P. Szczepaniak, P. Krupinski, Phys. Rev. D 73, 116002 (2006)

    Article  ADS  Google Scholar 

  52. Joan Soto, private communication at Brookhaven National Laboratory’s “International Heavy Quarkonium Workshop”, June 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F.J. Llanes-Estrada.

Additional information

PACS

12.39.Mk; 12.39.Pn; 12.39.Ki; 12.40.Yx

Rights and permissions

Reprints and permissions

About this article

Cite this article

General, I., Llanes-Estrada, F. & Cotanch, S. Coulomb gauge approach to qq̄g hybrid mesons. Eur. Phys. J. C 51, 347–358 (2007). https://doi.org/10.1140/epjc/s10052-007-0298-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-007-0298-3

Keywords

Navigation