Skip to main content
Log in

Minimal standard heterotic string models

  • Regular Article - Theorectical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Three generation heterotic string vacua in the free fermionic formulation gave rise to models with solely the MSSM states in the observable standard model charged sector. The relation of these models to Z2×Z2 orbifold compactifications dictates that they produce three pairs of untwisted Higgs multiplets. The reduction to one pair relies on the analysis of supersymmetric flat directions, which give a superheavy mass to the dispensable Higgs states. We explore the removal of the extra Higgs representations by using the free fermion boundary conditions, and hence we work directly at the string level, rather than in the effective low energy field theory. We present a general mechanism that achieves this reduction by using asymmetric boundary conditions between the left- and right-moving internal fermions. We incorporate this mechanism in explicit string models containing three twisted generations and a single untwisted Higgs doublet pair. We further demonstrate that an additional effect of the asymmetric boundary conditions is to substantially reduce the supersymmetric moduli space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Langacker, Phys. Rep. 72, 185 (1981)

    Article  ADS  Google Scholar 

  2. C. Kounnas, A. Masiero, D.V. Nanopoulos, K.A. Olive, Grand Unification with and without Supersymmetry and Cosmological Implications (World Scientific, Singapore, 1984)

    Google Scholar 

  3. D.J. Gross, J.A. Harvey, J.A. Martinec, R. Rohm, Nucl. Phys. B 256, 253 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  4. P. Candelas, G.T. Horowitz, A. Strominger, E. Witten, Nucl. Phys. B 258, 46 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  5. J. Giedt, Ann. Phys. 297, 67 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. S. Förste, H.P. Nilles, P.K.S. Vaudrevange, A. Wingerter, Phys. Rev. D 70, 106008 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  7. T. Kobayashi, S. Raby, R.J. Zhang, Nucl. Phys. B 704, 3 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. V. Bouchard, R. Donagi, Phys. Lett. B 633, 783 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  9. V. Braun, Y.H. He, B.A. Ovrut, T. Pantev, JHEP 0605, 043 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  10. R. Blumenhagen, S. Moster, T. Weigand, Nucl. Phys. B 751, 186 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  11. W. Buchmuller, K. Hamaguchi, O. Lebedev, M. Ratz, Phys. Rev. Lett. 96, 121602 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  12. J.E. Kim, B. Kyae, hep-th/0608085

  13. J.E. Kim, B. Kyae, hep-th/0608086

  14. I. Antoniadis, J. Ellis, J. Hagelin, D.V. Nanopoulos, Phys. Lett. B 231, 65 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  15. J.L. Lopez, D.V. Nanopoulos, K. Yuan, Nucl. Phys. B 399, 3 (1993)

    Article  Google Scholar 

  16. A.E. Faraggi, D.V. Nanopoulos, K. Yuan, Nucl. Phys. B 335, 347 (1990)

    Article  ADS  Google Scholar 

  17. A.E. Faraggi, Phys. Rev. D 46, 3204 (1992)

    Article  ADS  Google Scholar 

  18. I. Antoniadis, G.K. Leontaris, J. Rizos, Phys. Lett. B 245, 161 (1990)

    Article  ADS  Google Scholar 

  19. G.K. Leontaris, J. Rizos, Nucl. Phys. B 554, 3 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. A.E. Faraggi, Phys. Lett. B 278, 131 (1992)

    Article  ADS  Google Scholar 

  21. A.E. Faraggi, Nucl. Phys. B 387, 239 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  22. A.E. Faraggi, Nucl. Phys. B 403, 101 (1993)

    Article  ADS  Google Scholar 

  23. A.E. Faraggi, Phys. Lett. B 274, 47 (1992)

    Article  ADS  Google Scholar 

  24. A.E. Faraggi, Phys. Rev. D 47, 5021 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  25. A.E. Faraggi, Phys. Lett. B 377, 43 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  26. A.E. Faraggi, Nucl. Phys. B 487, 55 (1997)

    Article  ADS  Google Scholar 

  27. A.E. Faraggi, D.V. Nanopoulos, Phys. Rev. D 48, 3288 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  28. A.E. Faraggi, Nucl. Phys. B 387, 239 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  29. G.B. Cleaver, A.E. Faraggi, D.V. Nanopoulos, Phys. Lett. B 455, 135 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. G.B. Cleaver, A.E. Faraggi, D.V. Nanopoulos, Int. J. Mod. Phys. 16, 425 (2001)

    MATH  ADS  MathSciNet  Google Scholar 

  31. G.B. Cleaver, A.E. Faraggi, D.V. Nanopoulos, J.W. Walker, Nucl. Phys. B 593, 471 (2001)

    Article  ADS  Google Scholar 

  32. G.B. Cleaver, A.E. Faraggi, D.V. Nanopoulos, J.W. Walker, Nucl. Phys. B 620, 259 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  33. G.B. Cleaver, A.E. Faraggi, C. Savage, Phys. Rev. D 63, 066001 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  34. G.B. Cleaver, D.J. Clements, A.E. Faraggi, Phys. Rev. D 65, 106003 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  35. H. Kawai, D.C. Lewellen, S.H.-H. Tye, Nucl. Phys. B 288, 1 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  36. I. Antoniadis, C. Bachas, C. Kounnas, Nucl. Phys. B 289, 87 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  37. I. Antoniadis, C. Bachas, Nucl. Phys. B 289, 87 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  38. S. Kalara, J.L. Lopez, D.V. Nanopoulos, Nucl. Phys. B 353, 650 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  39. S. Ferrara, L. Girardello, C. Kounnas, M. Porrati, Phys. Lett. B 194, 368 (1987)

    Article  ADS  Google Scholar 

  40. S. Ferrara, C. Kounnas, M. Porrati, F. Zwirner, Phys. Lett. B 194, 366 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  41. G.B. Cleaver, A.E. Faraggi, S.E.M. Nooij, Nucl. Phys. B 672, 64 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. M. Dine, N. Seiberg, E. Witten, Nucl. Phys. B 289, 585 (1987)

    ADS  Google Scholar 

  43. A.E. Faraggi, Nucl. Phys. B 428, 111 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  44. A.E. Faraggi, Phys. Lett. B 520, 337 (2001)

    Article  MATH  ADS  Google Scholar 

  45. A.E. Faraggi, Int. J. Mod. Phys. 14, 1663 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  46. G. Cleaver, M. Cvetic, J.R. Espinosa, L.L. Everett, P. Langacker, J. Wang, Phys. Rev. D 59, 115003 (1999)

    Article  ADS  Google Scholar 

  47. A.E. Faraggi, Phys. Lett. B 326, 62 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  48. A.E. Faraggi, hep-th/9511093

  49. J. Ellis, A.E. Faraggi, D.V. Nanopoulos, Phys. Lett. B 419, 123 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  50. P. Berglund, J. Ellis, A.E. Faraggi, D.V. Nanopoulos, Z. Qiu, Phys. Lett. B 433, 269 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  51. A.E. Faraggi, Int. J. Mod. Phys. 15, 1345 (2000)

    MATH  ADS  MathSciNet  Google Scholar 

  52. A.E. Faraggi, Phys. Lett. B 544, 207 (2002) [hep-th/0411118]

    Article  MATH  ADS  Google Scholar 

  53. A.E. Faraggi, R. Donagi, Nucl. Phys. B 694, 187 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  54. A.E. Faraggi, S. Förste, M.C. Timirgaziu, JHEP 0608, 057 (2006)

    Article  ADS  Google Scholar 

  55. A.E. Faraggi, Nucl. Phys. B 728, 83 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  56. A.E. Faraggi, C. Kounnas, S. Nooij, J. Rizos, hep-th/0311058

  57. A.E. Faraggi, C. Kounnas, S. Nooij, J. Rizos, Nucl. Phys. B 695, 41 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  58. A.E. Faraggi, C. Kounnas, S. Nooij, J. Rizos, hep-th/0606144

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Timirgaziu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faraggi, A., Manno, E. & Timirgaziu, C. Minimal standard heterotic string models. Eur. Phys. J. C 50, 701–710 (2007). https://doi.org/10.1140/epjc/s10052-007-0243-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-007-0243-5

Keywords

Navigation