Skip to main content
Log in

Stabilization of extra dimensions and the dimensionality of the observed space

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We present a simple model for the late time stabilization of extra dimensions. The basic idea is that brane solutions wrapped around extra dimensions, which is allowed by string theory, will resist expansion due to their winding mode. The momentum modes in principle work in the opposite way. It is this interplay that leads to dynamical stabilization. We use the idea of democratic wrapping, where in a given decimation of extra dimensions, all possible winding cases are considered. To further simplify the study we assumed a symmetric decimation in which the total number of extra dimensions is taken to be Np where N can be called the order of the decimation. We also assumed that extra dimensions all have the topology of tori. We show that with these rather conservative assumptions, there exist solutions to the field equations in which the extra dimensions are stabilized and that the conditions do not depend on p. This fact means that there exists at least one solution to the asymmetric decimation case. If we denote the number of observed space dimensions (excluding time) by m, the condition for stabilization is m≥3 for pure Einstein gravity and m≤3 for dilaton gravity massaged by a string theory parameter, namely the dilaton coupling to branes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Kaya, T. Rador, Phys. Lett. B 565, 19 (2003) [hep-th/0301031]

    Article  MATH  ADS  Google Scholar 

  2. A. Kaya, J. Cosmol. Astropart. Phys. 08, 004 (2004) [hep-th/0405099]

    Google Scholar 

  3. A. Kaya, Class. Quantum Grav. 20, 4533 (2003) [hep-th/0302118]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. S. Arapoglu, A. Kaya, Phys. Lett. B 603, 107 (2004) [hep-th/0409094]

    Article  ADS  MathSciNet  Google Scholar 

  5. T. Rador, hep-th/0501249

  6. T. Rador, hep-th/0502039

  7. A. Kaya, JHEP 03, 003 (2005) [hep-th/0502133]

    Article  ADS  Google Scholar 

  8. R. Brandenberger C. Vafa, Nucl. Phys. B 316, 391 (1989)

    Article  ADS  Google Scholar 

  9. S. Watson, R. Brandenberger, J. Cosmol. Astropart. Phys. 0311, 008 (2003) [hep-th/0307044]

    Article  ADS  Google Scholar 

  10. S.P. Patil, R. Brandenberger, hep-th/0401037

  11. T. Battefeld, S. Watson, J. Cosmol. Astropart. Phys. 0406, 001 (2004) [hep-th/0403075]

    Article  ADS  MathSciNet  Google Scholar 

  12. S. Alexander, R.H. Brandenberger, D. Easson, Phys. Rev. D 62, 103509 (2000) [hep-th/0005212]

    Article  ADS  Google Scholar 

  13. D.A. Easson, Int. J. Mod. Phys. A 18, 4295 (2003) [hep-th/0110225]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. R.H. Brandenberger, D.A. Easson, D. Kimberly, Nucl. Phys. B 623, 421 (2002) [hep-th/0109165]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. R. Easther, B.R. Greene, M.G. Jackson, Phys. Rev. D 66, 023502 (2002) [hep-th/0204099]

    Article  ADS  MathSciNet  Google Scholar 

  16. S. Watson, R.H. Brandenberger, Phys. Rev. D 67, 043510 (2003) [hep-th/0207168]

    Article  ADS  MathSciNet  Google Scholar 

  17. T. Boehm, R.H. Branderberger, J. Cosmol. Astropart. Phys. 0306, 008 (2003) [hep-th/0208188]

    Article  ADS  Google Scholar 

  18. R. Easther, B.R. Greene, M.G. Jackson, D. Kabat, Phys. Rev. D 67, 123501 (2003) [hep-th/0211124]

    Article  ADS  MathSciNet  Google Scholar 

  19. S.H.S. Alexander, JHEP 0310, 013 (2003) [hep-th/0212151]

    ADS  Google Scholar 

  20. B.A. Bassett, M. Borunda, M. Serone, S. Tsujikawa, Phys. Rev. D 67, 123506 (2003) [hep-th/0301180]

    Article  ADS  Google Scholar 

  21. T. Biswas, JHEP 0402, 039 (2004) [hep-th/0311076]

    Article  ADS  Google Scholar 

  22. A. Campos, Phys. Rev. D 68, 104017 (2003) [hep-th/0304216]

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Campos, Phys. Lett. B 586, 133 (2004) [hep-th/0311144]

    Article  ADS  Google Scholar 

  24. J.Y. Kim, hep-th/0403096

  25. A. Campos, J. Cosmol. Astropart. Phys. 01, 010 (2005) [hep-th/0409101]

    Article  ADS  Google Scholar 

  26. A. Campos, hep-th/0501092

  27. T. Battefeld, S. Watson, hep-th/0510022

  28. P. Brax, C. van de Bruck, Class. Quantum Grav. 20, R201 (2003) hep-th/0303095

    Article  MATH  ADS  Google Scholar 

  29. R. Durrer, M. Kunz, M. Sakellariadou, Phys. Lett. B 614, 125 (2005) [hep-th/0501163]

    Article  ADS  MathSciNet  Google Scholar 

  30. A. Karch, L. Randall, Phys. Rev. Lett. 95, 161601 (2005) [htp-th/0506053]

    Article  ADS  MathSciNet  Google Scholar 

  31. R. Danos, A.R. Frey, A. Mazumdar, Phys. Rev. D 70, 106010 (2004) [hep-th/0409162]

    Article  ADS  Google Scholar 

  32. M. Borunda, L. Boubekeur, hep-th/0604085

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Rador.

Additional information

PACS

98.80.-k; 11.25.Uv

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rador, T. Stabilization of extra dimensions and the dimensionality of the observed space. Eur. Phys. J. C 49, 1083–1089 (2007). https://doi.org/10.1140/epjc/s10052-006-0181-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-006-0181-7

Keywords

Navigation