Skip to main content
Log in

Low-x QCD with CMS at the LHC

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The physics of gluon saturation and non-linear evolution at small values of parton momentum fraction x in the proton and nucleus is discussed in the context of experimental results at HERA and RHIC. The rich physics potential of low-x QCD studies at the LHC is discussed and some measurements in pp, pA and AA collisions accessible with the compact muon solenoid (CMS) experiment are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Dittmar et al., in Proc. HERA and the LHC, hep-ph/0511119

  2. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)

    Google Scholar 

  3. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)

    Article  ADS  Google Scholar 

  4. Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)

    Google Scholar 

  5. L.N. Lipatov, Sov. J. Nucl. Phys. 23, 338 (1976)

    Google Scholar 

  6. E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Zh. Eksp. Teor. Fiz. 72, 3 (1977)

    Google Scholar 

  7. Y.Y. Balitsky, L.N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978)

    Google Scholar 

  8. ZEUS Collaboration, S. Chekanov et al., Phys. Lett. B 632, 13 (2006)

    Article  ADS  Google Scholar 

  9. H1 Collaboration, A. Aktas et al., Eur. Phys. J. C 46, 27 (2006)

    Article  ADS  Google Scholar 

  10. C. Marquet, C. Royon, Nucl. Phys. B 739, 131 (2006)

    Article  MATH  ADS  Google Scholar 

  11. H1 Collaboration, C. Adloff et al., Phys. Lett. B 520, 183 (2001)

    Article  ADS  Google Scholar 

  12. E. Iancu, hep-ph/0608086

  13. D. Kharzeev, M. Nardi, Phys. Lett. B 507, 121 (2001)

    Article  ADS  Google Scholar 

  14. D. Kharzeev, E. Levin, M. Nardi, Nucl. Phys. A 747, 609 (2005)

    Article  ADS  Google Scholar 

  15. See e.g. E. Iancu, R. Venugopalan, in QGP, vol. 3, ed. by R.C. Hwa, X.N. Wang (World Scientific, Singapore) hep-ph/0303204 and refs. therein

  16. See e.g. J. Jalilian-Marian, Y.V. Kovchegov, Prog. Part. Nucl. Phys. 56, 104 (2006) and refs. therein

    Google Scholar 

  17. J. Jalilian-Marian, A. Kovner, A. Leonidov, H. Weigert, Nucl. Phys. B 504, 415 (1997)

    Article  ADS  Google Scholar 

  18. J. Jalilian-Marian, A. Kovner, A. Leonidov, H. Weigert, Phys. Rev. D 59, 014014 (1999)

    Article  ADS  Google Scholar 

  19. E. Iancu, A. Leonidov, L. McLerran, Nucl. Phys. A 692, 583 (2001)

    Article  MATH  ADS  Google Scholar 

  20. I. Balitsky, Nucl. Phys. B 463, 99 (1996)

    Article  ADS  Google Scholar 

  21. Y.V. Kovchegov, Phys. Rev. D 61, 074018 (2000)

    Article  ADS  Google Scholar 

  22. M.G. Ryskin et al., Z. Phys. C 76, 231 (1997)

    Article  Google Scholar 

  23. T. Teubner, AIP Conf. Proc. 792, 416 (2006)

    Article  ADS  Google Scholar 

  24. A. Accardi, nucl-th/0405046

  25. P. Newman, Int. J. Mod. Phys. A 19, 1061 (2004)

    Article  ADS  Google Scholar 

  26. D. d’Enterria, J. Phys. G 30, 767 (2004)

    Article  Google Scholar 

  27. A. Accardi et al., in CERN Yellow Report on Hard Probes in Heavy Ion Collisions at the LHC, hep-ph/0308248

  28. N. Armesto, J. Phys. G 32, R367 (2006)

    Article  Google Scholar 

  29. K. Golec-Biernat, M. Wüsthoff, Phys. Rev. D 59, 014017 (1999)

    Article  ADS  Google Scholar 

  30. K. Golec-Biernat, M. Wüsthoff, Phys. Rev. D 60, 114023 (1999)

    Article  ADS  Google Scholar 

  31. J.R. Forshaw, G. Shaw, JHEP 0412, 052 (2004)

    Article  ADS  Google Scholar 

  32. C. Marquet, L. Schoeffel, hep-ph/0606079

  33. E. Iancu, K. Itakura, L. McLerran, Nucl. Phys. A 708, 327 (2002)

    Article  MATH  ADS  Google Scholar 

  34. K.J. Eskola, Nucl. Phys. A 698, 78 (2002)

    Article  ADS  Google Scholar 

  35. N. Armesto, C.A. Salgado, U.A. Wiedemann, Phys. Rev. Lett. 94, 022002 (2005)

    Article  ADS  Google Scholar 

  36. PHOBOS, B.B. Back et al., Nucl. Phys. A 757, 28 (2005)

    Article  ADS  Google Scholar 

  37. BRAHMS, I. Arsene et al., Nucl. Phys. A 757, 1 (2005)

    Article  ADS  Google Scholar 

  38. V. Guzey, M. Strikman, W. Vogelsang, Phys. Lett. B 603, 173 (2004)

    Article  ADS  Google Scholar 

  39. D. Kharzeev, Y. Kovchegov, K. Tuchin, Phys. Lett. B 599, 23 (2004)

    ADS  Google Scholar 

  40. A.S. Ayan et al., J. Phys. G 30, N33 (2004)

    Article  Google Scholar 

  41. TOTEM, V. Berardi et al., TOTEM: Technical Design Report, CERN-LHCC-2004-002

  42. P. Katsas et al., submitted to Nucl. Instrum. Methods A

  43. O.A. Grachov et al., Proc. CALOR’06, nucl-ex/0608052

  44. A.H. Mueller, H. Navelet, Nucl. Phys. B 282, 727 (1987)

    Article  ADS  Google Scholar 

  45. D. d’Enterria, Proc. Quark Matter’05, nucl-ex/0601001

  46. S.R. Klein, J. Nystrand, Phys. Rev. C 60, 014903 (1999)

    Article  ADS  Google Scholar 

  47. A. Baltz, S. Klein, J. Nystrand, Phys. Rev. Lett. 89, 012301 (2002)

    Article  ADS  Google Scholar 

  48. CMS and TOTEM Collaborations, Prospects for Diffractive and Forward Physics at LHC, in preparation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D’Enterria.

Additional information

PACS

12.38.-t; 24.85.+p; 25.75.-q

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Enterria, D. Low-x QCD with CMS at the LHC. Eur. Phys. J. C 49, 155–162 (2007). https://doi.org/10.1140/epjc/s10052-006-0078-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-006-0078-5

Keywords

Navigation