Skip to main content
Log in

Augmented superfield approach to unique nilpotent symmetries for complex scalar fields in QED

  • Theoretical Physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract

The derivation of the exact and unique nilpotent Becchi–Rouet–Stora–Tyutin (BRST) and anti-BRST symmetries for the matter fields, present in any arbitrary interacting gauge theory, has been a long-standing problem in the framework of the superfield approach to the BRST formalism. These nilpotent symmetry transformations are deduced for the four (3+1)-dimensional (4D) complex scalar fields, coupled to the U(1) gauge field, in the framework of an augmented superfield formalism. This interacting gauge theory (i.e. QED) is considered on a six (4,2)-dimensional supermanifold parametrized by four even spacetime coordinates and a couple of odd elements of the Grassmann algebra. In addition to the horizontality condition (that is responsible for the derivation of the exact nilpotent symmetries for the gauge field and the (anti-)ghost fields), a new restriction on the supermanifold, owing its origin to the (super) covariant derivatives, has been invoked for the derivation of the exact nilpotent symmetry transformations for the matter fields. The geometrical interpretations for all the above nilpotent symmetries are discussed, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.A.M. Dirac, Lectures on Quantum Mechanics (Yeshiva University Press, New York, 1964)

    Google Scholar 

  2. For a review, see, e.g., K. Sundermeyer, Constrained Dynamics: Lecture Notes in Physics, Vol. 169 (Springer-Verlag, Berlin, 1982)

    Google Scholar 

  3. K. Nishijima, in: Progress in Quantum Field Theory, ed. by H. Ezawa, S. Kamefuchi (North-Holland, Amsterdam, 1986) p. 99

  4. For an extensive review, see, e.g., K. Nishijima, Czech. J. Phys. 46, 1 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  5. M. Henneaux, C. Teitelboim, Quantization of Gauge Systems (Princeton University Press, Princeton New Jersey, 1992)

    MATH  Google Scholar 

  6. S. Weinberg, The Quantum Theory of Fields: Modern Applications, Vol. 2 (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  7. N. Nakanishi, I. Ojima, Covariant Operator Formalism of Gauge Theories and Quantum Gravity (World Scientific, Singapore, 1990)

    Google Scholar 

  8. I.J.R. Aitchison, A.J.G. Hey, Gauge Theories in Particle Physics: A Practical Introduction (Adam Hilger, Bristol, 1982)

    Google Scholar 

  9. T. Eguchi, P.B. Gilkey, A.J. Hanson, Phys. Rep. 66, 213 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  10. S. Mukhi, N. Mukunda, Introduction to Topology, Differential Geometry and Group Theory for Physicists (Wiley Eastern, New Delhi, 1990)

    MATH  Google Scholar 

  11. J.W. van Holten, Phys. Rev. Lett. 64, 2863 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  12. J.W. van Holten, Nucl. Phys. B 339, 258 (1990)

    Article  Google Scholar 

  13. K. Nishijima, Prog. Theor. Phys. 80, 897 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  14. K. Nishijima, Prog. Theor. Phys. 80, 905 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  15. J. Thierry-Mieg, J. Math. Phys. 21, 2834 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  16. J. Thierry-Mieg, Nuovo Cim. A 56, 396 (1980)

    MathSciNet  Google Scholar 

  17. M. Quiros, F.J. De Urries, J. Hoyos, M.L. Mazon, E. Rodrigues, J. Math. Phys. 22, 1767 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  18. R. Delbourgo, P.D. Jarvis, J. Phys. A: Math. Gen. 15, 611 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  19. R. Delbourgo, P.D. Jarvis, G. Thompson, Phys. Lett. B 109, 25 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  20. L. Bonora, M. Tonin, Phys. Lett. B 98, 48 (1981)

    Article  ADS  Google Scholar 

  21. L. Bonora, P. Pasti, M. Tonin, Nuovo Cim. A 63, 353 (1981)

    MathSciNet  Google Scholar 

  22. L. Baulieu, J. Thierry-Mieg, Nucl. Phys. B 197, 477 (1982)

    Article  ADS  Google Scholar 

  23. L. Alvarez-Gaumé, L. Baulieu, Nucl. Phys. B 212, 255 (1983)

    Article  ADS  Google Scholar 

  24. D.S. Hwang, C.-Y. Lee, J. Math. Phys. 38, 30 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  25. R.P. Malik, Phys. Lett. B 584, 210 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  26. R.P. Malik, J. Phys. A: Math. Gen. 37, 5261 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  27. R.P. Malik, Int. J. Geom. Methods Mod. Phys. 1, 467 (2004)

    Article  MathSciNet  Google Scholar 

  28. R.P. Malik, Mod. Phys. Lett. A 20, 1767 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  29. R.P. Malik, Int. J. Mod. Phys. A 20, 4899 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  30. R.P. Malik, Int. J. Mod. Phys. A 20, 7285 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  31. R.P. Malik, Eur. Phys. J. C 45, 513 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  32. R.P. Malik, Eur. Phys. J. C 47, 227 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  33. K. Huang, Quarks, Leptons and Gauge Fields (World Scientific, Singapore, 1982)

    Google Scholar 

  34. R.P. Malik, J. Phys. A: Math. Gen. 39, 10575 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  35. R.P. Malik, B.P. Mandal, Eur. Phys. J. C 47, 219 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  36. R.P. Malik, An alternative to horizontality condition in superfield approach to BRST symmetries [hep-th/0603049]

  37. R.P. Malik, A generalization of horizontality condition in superfield approach to nilpotent symmetries for QED with complex scalar fields [hep-th/0605213]

  38. R.P. Malik, in preparation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.P. Malik.

Additional information

PACS

11.15.-q, 12.20.-m, 03.70.+k

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malik, R. Augmented superfield approach to unique nilpotent symmetries for complex scalar fields in QED. Eur. Phys. J. C 48, 825–834 (2006). https://doi.org/10.1140/epjc/s10052-006-0006-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-006-0006-8

Keywords

Navigation