Skip to main content
Log in

Investigation of electronic, dielectric, and plasmonic properties of two-dimensional electride Ba4Al5

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Ba4Al5 is an electride in which excess anion electrons are confined in the two-dimensional interlayer region. Here, we carry out a systematical study on the electronic, optical, and plasmonic properties of Ba4Al5 using the first-principles calculations. It is found that the metallic Ba4Al5 has a relatively low cleavage energy (~ 0.77 J/m2), suggesting a weak interlayer interaction and the easiness of exfoliation. Importantly, Ba4Al5 possesses a low work function on the (001) surface and exhibit excellent optical properties, such as high light absorption coefficient with weak optical anisotropy that becomes stronger when decreasing the thickness. It is further found that Ba4Al5 is also a suitable plasmonic material which can be used in the near-infrared frequency range.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. A.K. Geim, I.V. Grigorieva, Nature 499, 419 (2013). https://doi.org/10.1038/nature12385

    Article  Google Scholar 

  2. D.L. Druffel, A.H. Woomer, K.L. Kuntz, J.T. Pawlik, S.C. Warren, J. Mater. Chem. C 5, 11196 (2017). https://doi.org/10.1039/C7TC02488F

    Article  Google Scholar 

  3. K. Lee, S.W. Kim, Y. Toda, S. Matsuishi, H. Hosono, Nature 494, 336 (2013). https://doi.org/10.1038/nature11812

    Article  ADS  Google Scholar 

  4. H. Hosono, M. Kitano, Chem. Rev. 121, 3121 (2021). https://doi.org/10.1021/acs.chemrev.0c01071

    Article  Google Scholar 

  5. X. Liu, Z. Ding, J. Liu, W. Hu, J. Yang, Nanoscale 12, 5578 (2020). https://doi.org/10.1039/C9NR10765G

    Article  Google Scholar 

  6. X. Zhang, Z. Xiao, H. Lei, Y. Toda, S. Matsuishi, T. Kamiya, S. Ueda, H. Hosono, Chem. Mater. 26, 6638 (2014). https://doi.org/10.1021/cm503512h

    Article  Google Scholar 

  7. Z. Fang, X. Wang, X. Cao, H. Yang, F. Yin, K. Liu, X. Zhang, J. Mater. Chem. C 10, 7494 (2022). https://doi.org/10.1039/D2TC00667G

    Article  Google Scholar 

  8. B. Wan, Y. Lu, Z. Xiao, Y. Muraba, J. Kim, D. Huang, L. Wu, H. Gou, J. Zhang, F. Gao, H.K. Mao, H. Hosono, npj Comput. Mater. 4, 77 (2018). https://doi.org/10.1038/s41524-018-0136-1

    Article  ADS  Google Scholar 

  9. S. Yi, J.H. Choi, K. Lee, S.W. Kim, C.H. Park, J.H. Cho, Phys. Rev. B 94, 235428 (2016). https://doi.org/10.1103/PhysRevB.94.235428

    Article  ADS  Google Scholar 

  10. D.L. Druffel, K.L. Kuntz, A.H. Woomer, F.M. Alcorn, J. Hu, C.L. Donley, S.C. Warren, J. Am. Chem. Soc. 138, 16089 (2016). https://doi.org/10.1021/jacs.6b10114

    Article  Google Scholar 

  11. X. Sui, J. Wang, W. Duan, J. Phys. Chem. C 123, 5003 (2019). https://doi.org/10.48550/arXiv.1904.09050

    Article  Google Scholar 

  12. W. Meng, X. Zhang, Y. Liu, X. Dai, G. Liu, Phys. Rev. B 104, 195145 (2021). https://doi.org/10.1103/PhysRevB.104.195145

    Article  ADS  Google Scholar 

  13. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0

    Article  Google Scholar 

  14. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  15. M. Jehle, H. Scherer, M. Wendorff, C. Roehr, J. Solid State Chem. 182, 1129 (2009). https://doi.org/10.1002/CHIN.200930017

    Article  ADS  Google Scholar 

  16. Y. Prots, F. Lange, C. Drathen, M. Schmidt, Y. Grin, Z. Naturforsch. B 71, 611 (2016). https://doi.org/10.1002/CHIN.201633005

    Article  Google Scholar 

  17. N.I. Medvedeva, O.N. Mryasov, Y.N. Gornostyrev, D.L. Novikov, A.J. Freeman, Phys. Rev. B 54, 13506 (1996). https://doi.org/10.1103/physrevb.54.13506

    Article  ADS  Google Scholar 

  18. S. Zhao, Z. Li, J. Yang, J. Am. Chem. Soc. 136, 13313 (2014). https://doi.org/10.1021/ja5065125

    Article  Google Scholar 

  19. M. Farzan, S.M. Elahi, M.R. Abolhassani, H. Salehi, Superlattices Microstruct. 105, 99 (2017). https://doi.org/10.1016/J.OPTCOM.2016.08.078

    Article  ADS  Google Scholar 

  20. J. Li, X. Zhang, Z. Fang, X. Cao, Y. Li, C. Sun, Z. Chen, F. Yin, Results Phys. 28, 104615 (2021). https://doi.org/10.1016/j.rinp.2021.104615

    Article  Google Scholar 

  21. T. Van Mourik, M. Buhl, M.P. Gaigeot, Philos. Trans. R. Soc. A. 372, 20120488 (2014). https://doi.org/10.1098/rsta.2012.0488

    Article  Google Scholar 

  22. D.R. Smith, D. Schurig, Phys. Rev. Lett. 90, 077405 (2003). https://doi.org/10.1103/PhysRevLett.90.077405

    Article  ADS  Google Scholar 

  23. Z. Jacob, L.V. Alekseyev, E. Narimanov, Opt. Express 14, 8247 (2006). https://doi.org/10.1364/oe.14.008247

    Article  ADS  Google Scholar 

  24. Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, Science 315, 1686 (2007). https://doi.org/10.1126/science.1137368

    Article  ADS  Google Scholar 

  25. J. Zhang, L. Zhang, W. Xu, J. Phys. D Appl. Phys. 45, 113001 (2012). https://doi.org/10.1007/bfb0048317

    Article  ADS  Google Scholar 

  26. T.J. Davis, Opt. Commun. 282, 135 (2009). https://doi.org/10.1016/j.optcom.2008.09.043

    Article  ADS  Google Scholar 

  27. B. Wang, G.P. Wang, Appl. Phys. Lett. 89, 133106 (2006). https://doi.org/10.1063/1.2357557

    Article  ADS  Google Scholar 

  28. K.J. Moh, X.C. Yuan, J. Bu, S.W. Zhu, B.Z. Gao, Opt. Lett. 34, 971 (2009). https://doi.org/10.1364/OL.34.000971

    Article  ADS  Google Scholar 

  29. M.L. Dakss, L. Kuhn, P.F. Heidrich, B.A. Scott, Appl. Phys. Lett. 16, 523 (1970). https://doi.org/10.1063/1.1653091

    Article  ADS  Google Scholar 

  30. Y. Liu, Y. Ma, Front. Phys. 8, 312 (2020). https://doi.org/10.3389/fphy.2020.00312

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (No. 2022 YFE0109200) and National Natural Science Foundation of China (No. 12074013).

Funding

This work was supported by the Ministry of Science and Technology of China (No. 2022 YFE0109200) and National Natural Science Foundation of China (No. 12074013).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to this study. YH and ZX thought about the main framework of this article. YH designed and verified the calculation method and carried out theoretical calculation. YH, CX, FZ, and ZX participated in the discussion and analysis of the calculation results. YF and CZ supervised the research of this project. YH wrote the initial draft and polished it under the guidance of ZX. All the authors participated in the writing and revision of the manuscript.

Corresponding authors

Correspondence to Feifei Yin or Xiao Zhang.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Cao, X., Fang, Z. et al. Investigation of electronic, dielectric, and plasmonic properties of two-dimensional electride Ba4Al5. Eur. Phys. J. B 96, 3 (2023). https://doi.org/10.1140/epjb/s10051-022-00467-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00467-x

Navigation