Skip to main content

Advertisement

Log in

First-principles computational study on structural, elastic, magnetic, electronic, and thermoelectric properties of Co2MnGe: a potential Heusler ternary compound

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this research work, first-principles computational study is performed on the structural, elastic, thermal, magnetic, electronic, and thermoelectric properties of the ternary Heusler compound Co2MnGe in its cubic phase. For this purpose, the “full potential linearized augmented plane-wave FP-L(APW + lo)” approach realized in the WIEN2k code is employed. To determine total energy, the exchange–correlation energy/potential part is treated within the “Perdew–Burke–Ernzerhof (PBE)” parameterized approach of “generalized gradient approximation (GGA) and modified Becke–Johnson (mBJ)” schemes. The magnetic phase stability was predicted via quantum mechanically total energy calculations for both non-magnetic and magnetic phases. Our obtained results for total energy show that the title material is stable in the ferromagnetic phase. The analysis of the profile of density of states (DOS), band structure plots, and the calculations of spin magnetic moment endorse the semi-metallic nature of the title compound. Calculations of the elastic constants, Cij, and results of the elastic moduli, such as bulk modulus (B), shear modulus (G), Young modulus (E), Poisson ratio (ν), and ratio B/G, are reported and analyzed as well. Gibbs computational code based on the “quasi-harmonic Debye model” is used to explore thermal properties, whereas parameters to understand the thermoelectric behavior, BoltzTrap code based on Boltzmann theory for transport properties is applied. Besides that, the chemical potential effect on the Seebeck coefficient and power factor is also analyzed at temperatures 300, 600, and 900 K. The results of thermoelectric parameters of the title Heusler compound, for the spin-down channel, are found good; hence, the obtained results highlight the title compound as a potential candidate for thermoelectric devices.

Graphical Abstract

Total energy as a function of volume and Seebeck coefficient of Co2MnGe

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data sharing not applicable to this article as no datasets were generated or analysed during the current study.]

References

  1. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. Von Molnár, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001). https://doi.org/10.1126/science.1065389

    Article  ADS  Google Scholar 

  2. G.A. Prinz, Magnetoelectronics. Science 282, 1660–1663 (1998). https://doi.org/10.1126/science.282.5394.1660

    Article  Google Scholar 

  3. Y. Ohno, D.K. Young, B. Beschoten, F. Matsukura, H. Ohno, D.D. Awschalom, Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999). https://doi.org/10.1038/45509

    Article  ADS  Google Scholar 

  4. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000). https://doi.org/10.1126/science.287.5455.1019

    Article  ADS  Google Scholar 

  5. J.H. Park, E. Voscovo, H.J. Kim, C. Kwon, R. Ramesh, T. Venkatesh, Direct evidence for a half-metallic ferromagnet. Nature 392, 794–796 (1998). https://doi.org/10.1038/33883

    Article  ADS  Google Scholar 

  6. S. Ouardi, G.H. Fecher, B. Balke, A. Beleanu, X. Kozina, G. Stryganyuk, C. Felser, Electronic and crystallographic structure, hard x-ray photoemission, and mechanical and transport properties of the half-metallic Heusler compound Co2MnGe. Phys. Rev. B 84, 155122-1–155122-12 (2011). https://doi.org/10.1103/PhysRevB.84.155122

    Article  ADS  Google Scholar 

  7. P. Webster, Magnetic and chemical order in Heusler alloys containing cobalt and manganese. J. Phys. Chem. Solids 32, 1221–1231 (1971). https://doi.org/10.1016/S0022-3697(71)80180-4

    Article  ADS  Google Scholar 

  8. R. Venkatasubramanian, Recent Trends in Thermoelectric Materials Research III, Semiconductors and Semimetals, vol. 71 (Academic, New York, 2001), p.175

    Google Scholar 

  9. T. Ishikawa, T. Marukame, K.I. Matsuda, T. Uemura, M. Arita, M. Yamamoto, Structural and magnetic properties of epitaxially grown full-Heusler alloy Co2MnGe thin films deposited using magnetron sputtering. J. Appl. Phys. 99, 08J110-3 (2006). https://doi.org/10.1063/1.1270980

    Article  Google Scholar 

  10. S. Hakamata, T. Ishikawa, T. Marukame, K.I. Matsuda, T. Uemura, M. Arita, M. Yamamoto, Improved tunnel magnetoresistance characteristics of magnetic tunnel junctions with a Heusler alloy thin film of Co2MnGe and a MgO tunnel barrier. J. Appl. Phys. 101, 09J513-4 (2007). https://doi.org/10.1063/1.2713209

    Article  Google Scholar 

  11. S. Sharma, S.K. Pandey, Effect of on-site Coulomb interaction (U) on the electronic and magnetic properties of Fe2MnSi, Fe2MnAl and Co2MnGe. J. Magn. Magn. Mater. 403, 1–7 (2016). https://doi.org/10.1016/j.jmmm.2015.11.069

    Article  ADS  Google Scholar 

  12. S. Sharma, S.K. Pandey, Importance of two current model in understanding the electronic transport behavior of inverse Heusler alloy: Fe2CoSi. J. Phys. Condens. Matter 26, 215501 (2014)

    Article  ADS  Google Scholar 

  13. P.J. Brown, K.U. Neumann, P.J. Webster, K.R.A. Ziebeck, The magnetization distributions in some Heusler alloys proposed as half-metallic ferromagnets. J. Phys. Condens. Matter 12, 1827–1835 (2000). https://doi.org/10.1088/0953-8984/12/8/325

    Article  ADS  Google Scholar 

  14. O.K. Anderson, Linear methods in band theory. Phys. Rev. B 42, 3060–3083 (1975). https://doi.org/10.1103/PhysRevB.12.3060

    Article  ADS  Google Scholar 

  15. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. B 136, 864–871 (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  ADS  Google Scholar 

  16. W. Kohn, L.J. Sham, The magnetization distributions in some Heusler alloys proposed as half-metallic self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, 1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  ADS  Google Scholar 

  17. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, an Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Vienna, Austria, 2001)

    Google Scholar 

  18. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3866 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  19. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with semi local exchange-correlation potential. Phys. Rev. Lett. 102, 226401–226405 (2009). https://doi.org/10.1103/PhysRevLett.102.226401

    Article  ADS  Google Scholar 

  20. F. Tran, P. Blaha, Implementation of screened hybrid functionals based on the Yukawa potential within the LAPW basis set. Phys. Rev. B 83, 235118–235213 (2011). https://doi.org/10.1103/PhysRevB.83.235118

    Article  ADS  Google Scholar 

  21. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.518

    Article  ADS  Google Scholar 

  22. A. Birsan, V. Kuncser, Theoretical investigations of electronic structure and magnetism in Zr2CoSn full-Heusler compound. J. Magn. Magn. Mater. 388, 1–4 (2015). https://doi.org/10.1016/j.jmmm.2015.04.007

    Article  ADS  Google Scholar 

  23. F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 30, 244–255 (1944)

    Article  ADS  MATH  Google Scholar 

  24. A.S. Manea, O. Monnereau, R. Notonier, F. Guinneton, C. Logofatu, L. Tortet, A. Garnier, M. Mitrea, C. Negrila, W. Branford, C.E.A. Grigorescu, Heusler bulk materials as targets for pulsed laser deposition: growth and characterisation. J. Cryst. Growth 275, e1787–e1792 (2005). https://doi.org/10.1016/j.jcrysgro.2004.11.213

    Article  ADS  Google Scholar 

  25. H.C. Kandpal, G.H. Fecher, C. Felser, Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds. J. Phys. D Appl. Phys. 40, 1507–1523 (2007). https://doi.org/10.1088/0022-3727/40/6/S01

    Article  ADS  Google Scholar 

  26. M. Yin, S. Chen, P. Nash, Enthalpies of formation of selected Co2YZ Heusler compounds. J. Alloys Compd. 577, 49–56 (2013). https://doi.org/10.1016/j.jallcom.2013.04.136

    Article  Google Scholar 

  27. M. Özduran, A. Candan, S. Akbudak, A.K. Kushwaha, A. İyigör, Structural, elastic, electronic, and magnetic properties of Si-doped Co2MnGe full-Heusler type compounds. J. Alloys Compd. 845, 155499–11 (2020). https://doi.org/10.1016/j.jallcom.2020.155499

    Article  Google Scholar 

  28. S. Picozzi, A. Continenza, A.J. Freeman, Co2MnX (X=Si, Ge, Sn) Heusler compounds: an ab initio study of their structural, electronic, and magnetic properties at zero and elevated pressure. Phys. Rev. B 66, 094421–9 (2002). https://doi.org/10.1103/PhysRevB.66.094421

    Article  ADS  Google Scholar 

  29. S.C. Wu, G.H. Fecher, S.S. Naghavi, C. Felser, Elastic properties and stability of Heusler compounds: Cubic Co2YZ compounds with L21 structure. J. Appl. Phys. 125, 082523–18 (2019). https://doi.org/10.1063/1.5054398

    Article  ADS  Google Scholar 

  30. A. Akriche, B. Abidri, S. Hiadsi, H. Bouafia, B. Sahli, Half-metallic properties and the robustness of Co2MnGe Heusler alloy under pressure: ab-initio calculation. Intermetallics 68, 42–50 (2016). https://doi.org/10.1016/j.intermet.2015.09.004

    Article  Google Scholar 

  31. A. Candan, G. Uğur, Z. Charifi, H. Baaziz, M.R. Ellialtıoğlu, Electronic structure and vibrational properties in cobalt-based full-Heusler compounds: a first principle study of Co2MnX (X = Si, Ge, Al, Ga). J. Alloys Compd. 560, 215–222 (2013). https://doi.org/10.1016/j.jallcom.2013.01.102

    Article  Google Scholar 

  32. J.C. Slater, The ferromagnetism of nickel. II. Temperature effects. Phys. Rev. 49, 931–937 (1936). https://doi.org/10.1103/PhysRev.49.931

    Article  ADS  Google Scholar 

  33. L. Pauling, The nature of the interatomic forces in metals. Phys. Rev. 54, 899–904 (1938). https://doi.org/10.1103/PhysRev.54.899

    Article  ADS  MATH  Google Scholar 

  34. I. Galanakis, P.H. Dederichs, N. Papanikolaou, Phys. Rev. B 66, 174429 (2002)

    Article  ADS  Google Scholar 

  35. D.P. Rai, M.P. Ghimire, R.K. Thapa, Ground state study of electronic and magnetic properties of Co2MnZ (Z = Ge, Sn) type Heusler compounds: a first principle study. J. Phys. Conf. Ser. 377, 012074–5 (2012). https://doi.org/10.1088/1742-6596/377/1/012074

    Article  Google Scholar 

  36. F. Aguilera-Granja, R.H. Aguilera-del-Toro, J.L. Moràn-Lòpez, A first principles systematic study of the structural, electronic and magnetic properties of Heusler X2MnZ with X = Fe Co, Ni, Cu, Ru, Rh, Pd, Ag, Pt, Au and Z = Al, Si, Ga, Ge, In and Sn. Mater. Res. Express 6, 106118 (2019)

    Article  ADS  Google Scholar 

  37. D. Singh, D.K. Pandey, D.K. Singh, R.R. Yadav, Propagation of ultrasonic waves in neptunium monochalcogenides. Appl. Acoust. 72, 737–741 (2011). https://doi.org/10.1016/j.apacoust.2011.04.002

    Article  Google Scholar 

  38. N. Kaurav, Y.K. Kuo, G. Joshi, K.K. Choudhary, D. Varshney, High-pressure structural phase transition and elastic properties of yttrium pnictides. High Press. Res. 28, 651–663 (2008). https://doi.org/10.1080/08957950802348542

    Article  ADS  Google Scholar 

  39. M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford, 1998)

    MATH  Google Scholar 

  40. W. Voigt, Lehrbuch der kristallphysik (mit ausschluss der kristalloptik) (B.G. Teubner, Leipzig, Berlin, 1928)

    MATH  Google Scholar 

  41. A. Reuss, A. Angew, Berechung der Fliessgrenze von Mischkristalle auf Ground der Plastizitatsbedigung fur Einkristalle. Math. Mech. 9, 49–58 (1929). https://doi.org/10.1002/zamm.19290090104

    Article  Google Scholar 

  42. R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Lond. A 65, 349–354 (1952). https://doi.org/10.1088/0370-1298/65/5/307

    Article  ADS  Google Scholar 

  43. S.F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823–843 (1954). https://doi.org/10.1080/14786440808520496

    Article  Google Scholar 

  44. I.N. Frantsevich, F.F. Voronov, S.A. Bokuta, in Elastic Constants and Elastic Moduli of Metals and Insulators Handbook. ed. by I.N. Frantsevich (Naukuva Dumka, Kiev, 1983), pp.60–180

    Google Scholar 

  45. M. Mattesini, R. Ahuja, B. Johansson, Cubic Hf3N4 and Zr3N4: a class of hard materials. Phys. Rev. B 68, 184108–184115 (2003). https://doi.org/10.1103/PhysRevB.68.184108

    Article  ADS  Google Scholar 

  46. O.L. Anderson, A simplified method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909–917 (1963). https://doi.org/10.1016/0022-3697(63)90067-2

    Article  ADS  Google Scholar 

  47. C. Nianyi, L. Chonghe, Y. Shuwen, W. Xueye, Regularities of melting behavior of some binary alloy phases. Part 2. Computerized prediction of melting points of alloy phases. J. Alloy. Compd. 234, 130–136 (1996). https://doi.org/10.1016/0925-8388(95)01963-4

    Article  Google Scholar 

  48. M.A. Zagrebin, V.V. Sokolovskiy, V.D. Buchelnikov, Electronic and magnetic properties of the Co2-based Heusler compounds under pressure: first-principles and Monte Carlo studies. J. Phys. D Appl. Phys. 49, 355004–355015 (2016). https://doi.org/10.1088/0022-3727/49/35/355004

    Article  Google Scholar 

  49. M.A. Blanco, E. Francisco, V. Luaňa, Comput. Phys. Commun. 158, 57 (2004)

    Article  ADS  Google Scholar 

  50. M.A. Blanco, A.M. Pendás, E. Francisco, J.M. Recio, R. Franco, Thermodynamical properties of solids from microscopic theory: applications to MgF2 and Al2O3. J. Mol. Struct. Theochem. 368, 245–255 (1996). https://doi.org/10.1016/S0166-1280(96)90571-0

    Article  Google Scholar 

  51. M. Florez, J.M. Recio, E. Francisco, M.A. Blanco, A.M. Pendás, First-principles study of the rocksalt–cesium chloride relative phase stability in alkali halides. Phys. Rev. B 66, 144112–8 (2002)

    Article  ADS  Google Scholar 

  52. J.P. Poirier, Introduction to the Physics of the Earth’s Interior, vol. 39 (Cambridge University Press, Oxford, 2000)

    Book  Google Scholar 

  53. Z.J. Liu, X.W. Sun, C.R. Zhang, J.B. Hu, T. Song, J.H. Qi, Elastic tensor and thermodynamic property of magnesium silicate perovskite from first-principles calculations. Chin. J. Chem. Phys. 24(6), 703–710 (2011). https://doi.org/10.1088/1674-0068/24/06/703-710

    Article  Google Scholar 

  54. P. Debye, Zur Theorie der spezifischen Wärmen. Ann. Phys. 344, 789–839 (1912). https://doi.org/10.1002/andp.19123441404

    Article  MATH  Google Scholar 

  55. N. Bioud, K. Kassali, N. Bouarissa, Thermodynamic properties of compressed CuX (X = Cl, Br) compounds: ab initio study. J. Electron. Mater. 46, 2521–2528 (2017). https://doi.org/10.1007/s11664-017-5335-x

    Article  ADS  Google Scholar 

  56. G.K.H. Madsen, D.J. Singh, BoltzTraP: a code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006). https://doi.org/10.1016/j.cpc.2006.03.007

    Article  ADS  MATH  Google Scholar 

  57. J. Duan, Y.-W. Wang, A.-P. Zhang, S. Liu, S.A. Dar, Electronic structure, elastic, mechanical, thermodynamic and thermoelectric investigations of Mn2PtX (X=Rh, Pd) Heusler alloys. Solid State Commun. (2018). https://doi.org/10.1016/j.ssc.2018.12.013

    Article  Google Scholar 

  58. S.A. Khandy, D.C. Gupta, Electronic structure, magnetism and thermoelectricity in layered perovskites: Sr2SnMnO6 and Sr2SnFeO6. J Magn. Magn. Mater. 441, 166–173 (2017). https://doi.org/10.1016/j.jmmm.2017.05.058

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial Support of the General Direction of Scientific Research, Algeria.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection and analysis were performed by [Ghemid], [Kadri], [Amraoui], and [Boumaza]. The first draft of the manuscript was written by [Meradji], [Berkani], and [Bouaricha], and all authors commented on previous versions of the manuscript. Ahmed, Javed and Meradji: Supervising, Reviewing, and Editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to H. Meradji.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Consent for publication

All authors approve the ethics.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amraoui, R., Kadri, S., Meradji, H. et al. First-principles computational study on structural, elastic, magnetic, electronic, and thermoelectric properties of Co2MnGe: a potential Heusler ternary compound. Eur. Phys. J. B 95, 198 (2022). https://doi.org/10.1140/epjb/s10051-022-00466-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00466-y

Navigation