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Abstract. A fascinating phenomenon is the self-organization of coupled systems to a whole. This phe-
nomenon is studied for a particular class of coupled oscillatory systems exhibiting so-called simultaneously
diagonalizable matrices. For three exemplary systems, namely, an electric circuit, a coupled system of
oscillatory neurons, and a system of coupled oscillatory gene regulatory pathways, eigenvectors and ampli-
tude equations are derived. It is shown that for all three systems, only the unstable eigenvectors and their
amplitudes matter for the dynamics of the systems on their respective limit cycle attractors. A general
class of coupled second-order dynamical oscillators is presented in which stable limit cycles emerging via
Hopf bifurcations are solely specified by appropriately defined unstable eigenvectors and their amplitudes.
While the eigenvectors determine the orientation of limit cycles in state spaces, the amplitudes determine
the evolution of states along those limit cycles. In doing so, it is shown that the unstable eigenvectors
define reduced amplitude spaces in which the relevant long-term dynamics of the systems under consider-
ation takes place. Several generalizations are discussed. First, if stable and unstable system parts exhibit a
slow-fast dynamics, the fast variables may be eliminated and approximative descriptions of the emerging
limit cycle dynamics in reduced amplitude spaces may be again obtained. Second, the principle of reduced
amplitude spaces holds not only for coupled second-order oscillators, but can be applied to coupled third-
order and higher order oscillators. Third, the possibility to apply the approach to multifrequency limit
cycle attractors and other types of attractors is discussed.

1 Introduction

On the one hand, instabilities are at the heart of various
self-organization and pattern formation phenomena [1–
4]. The way such phenomena enfold in time is typically
determined by unstable eigenvectors and eigenfunctions
and their corresponding amplitudes. This fundamen-
tal framework for the description of systems close to
instabilities has been introduced several decades ago
[1,5–8]. Since then, it has produced a steady stream of
new applications in contemporary research [9–17] (see
in particular recent applications in COVID-19 research
[18–20]), which illustrates the important task to make
the eigenvector/eigenfunction framework available in
research fields that have not yet taken fully advan-
tage of this approach. On the other hand, coupled
oscillator systems have been comprehensively studied
[21,22], in particular, to identify their characteristic
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attractors. A frequently used technique is the phase
dynamics approach in which phase dynamics equations
are derived from coupled oscillator state equations and
stability features of the oscillatory dynamics are pri-
marily discussed on the level of the phase dynamics
[22–27]. Alternatively, eigenvalues of coupled oscillator
systems are determined to address the nature of the
systems’ fixed points and/or extensive numerical sim-
ulations are conducted to identify attractors beyond
fixed points. The latter approach has been used, for
example, to study coupled electric oscillators [28,29],
coupled Fitzhugh–Nagumo oscillators [30–35], and cou-
pled gene regulation oscillators [36–38]. While these
approaches provide useful insights, they do not take
fully advantage of the aforementioned framework based
on unstable eigenvectors and amplitudes — in particu-
lar, in the context of systems with simultaneously diag-
onalizable matrices. Consequently, in the current study,
in Sect. 2, we begin with a system of coupled electric
oscillators and demonstrate how the concept of unsta-
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ble eigenvectors and amplitudes can be used to deter-
mine the location of and the dynamics on the system’s
limit cycle. Subsequently, in Sect. 3, a general frame-
work to address coupled oscillators whose limit cycle
attractors are determined by unstable eigenvectors and
their amplitudes will be developed. In this context, the
theory of simultaneously diagonalizable matrices will
play a crucial role. Finally, in Sect. 4, we will work out
two further examples from biology: coupled Fitzhugh–
Nagumo neurons and coupled gene regulatory oscilla-
tors. Sections 2 to 4 will demonstrate that the emerg-
ing stable oscillations can be studied with the help
of reduced amplitude spaces [1,13], that is, amplitude
spaces that are exclusively spanned by the dominant
(unstable) amplitudes. Section 5.1 will generalize this
principle for systems exhibiting a coupling between sta-
ble and unstable dynamics. It will be shown that under
appropriate circumstances the limit cycle dynamics can
at least approximately described in terms of an ampli-
tude dynamics the lives in a reduced amplitude space.

2 Elwakil–Salama coupled electric
oscillators

Elwakil and Salama proposed an electric circuit com-
posed of two coupled oscillatory units that can be
described by [28]

1
ω0

d
dt

x = QG(u − x)[(u − x)2 − 1] − Qy, (1)

1
ω0

d
dt

y =
1
Q

(x − y), (2)

1
ω0

d
dt

u = QG(x − u)[(u − x)2 − 1] − Qv, (3)

1
ω0

d
dt

v =
1
Q

(u − v), (4)

where the pair x, y describes the first unit and u, v
describe the second unit; x and u are voltage-like vari-
ables, whereas y and v are current-like variables. How-
ever, in Eqs. (1)–(4), re-scaled variables are shown that
correspond to dimensionless quantities. The parameters
Q > 1 and G > 0 correspond to the quality factor of
the electric circuit (Q) and the gain (G) of the non-
linearity that connects the two electric units. Q and
G, again, are dimensionless quantities. The angular fre-
quency parameter ω0 > 0 can be eliminated by rescaling
time. However, in the context of numerical simulations,
it is helpful to keep ω0 in the equations. Equations (1)–
(4) can be equivalently expressed as the coupled system
of second-order equations

d2

dt2
x = −ω2

0x + ω2
0G(p − p3)

−ω0

Q

d
dt

x + ω0QG(1 − 3p2)
d
dt

p,

d2

dt2
u = −ω2

0u − ω2
0G(p − p3)

−ω0

Q

d
dt

u − ω0QG(1 − 3p2)
d
dt

p, (5)

with p = x − u. The transformation into Eq. (5) is
a key step, because it allows us to identify two new
variables, one of which is the aforementioned variable
p. The second new variable is given by s = x+u. From
Eq. (5), it follows that the evolution of s is determined
by:

d2

dt2
s = −ω2

0s − ω0

Q

d
dt

s, (6)

and the eigenvalues

λ
(s)
1,2 = − ω0

2Q
± iωs, (7)

with ωs = ω0

√
1 − 1/(4Q2). In Eq. (7) and in what

follows i is the imaginary unit. Equation (6) describes
a damped oscillation. In contrast, for p = x − u from
Eq. (5), it follows that:

d2

dt2
p = −ω2

0 [(1 − 2G)p + 2Gp3]

+ω0

(
2QG − 1

Q
− 6QGp2

)
d
dt

p. (8)

Equation (8) describes a van-der-Pol oscillator [39] of
the form

d2

dt2
p = −dV

dp
+ (A − Bp2)

d
dt

p, (9)

with a potential function V (p) = 0.5ω2
0 [(1 − 2G)p2 +

Gp4], A = ω0(2Q2G − 1)/Q and B = 6QGω0. Lin-
earizing Eq. (8) at the fixed point (p = 0,dp/dt = 0)
yields

d2

dt2
p = −ω2

0(1 − 2G)p +
ω0

Q
(2Q2G − 1)

d
dt

p. (10)

From Eq. (10), it follows that the evolution of p close
to the fixed point is characterized by the eigenvalues:

λ
(p)
1,2 =

ω0

2Q
(2Q2G − 1) ± iωp, (11)

with ωp = ω0

√
S/(2Q), S = (1 − 2G)4Q2 − (2GQ2 −

1)2. The eigenvalues shown in Eq. (7) and (11) have
been previously derived using a different approach [28].
Let us evaluate Eq. (11). For G < 1/(2Q2), we have
lR{λ

(p)
1,2} < 0 and ωp > 0. For G = 1/(2Q2), we have
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Fig. 1 Simulation results (part 1) obtained for the Elwakil-Salama circuit (1)–(4). Panel a: x (solid line) and u (dotted
line) as functions of time. Panel b: s and p over time. The figure demonstrates for the Elwakil–Salama circuit that while
in state space, two variables (x and u) are needed to characterize the limit cycle dynamics of the electronic system, in
amplitude space, only a single variable (p) is needed. For parameters and initial conditions, see text

lR{λ
(p)
1,2} = 0 and ωp > 0. For 1/(2Q2) < G < G∗, we

have lR{λ
(p)
1,2} > 0 and ωp > 0 with

G∗ = − 1
2Q2

+

√
1

4Q4
+

1
Q2

(
1 − 1

4Q2

)
, (12)

and 1/(2Q2) < G∗ < 1/2. For G = G∗, we have S =
0 ⇒ ωp = 0, such that λ

(p)
1,2 becomes real with λ

(p)
1,2 > 0.

For G > G∗, the eigenvalues λ
(p)
1,2 remain real valued.

In the context of the current study, the parameter
domain D = [0, G∗) is of particular interest. At G =
Gcrit ∈ D with Gcrit = 1/(2Q2), a Hopf bifurcation
takes place and p describes a self-oscillator. This also
implies that the original coupled oscillator system (1)–
(4) exhibits a Hopf bifurcation at G = Gcrit. From the
definitions of s and p, it follows that the 2D state vector
X = (x, u) can be expressed like:

X(t) = s(t)vs + p(t)vp, (13)

with

vs =
1
2

(
1
1

)
, vp =

1
2

(
1

−1

)
. (14)

As will be shown in Sect. 3, the vectors vs and vp

correspond to non-normalized eigenvectors of appro-
priately defined 2 × 2 matrices of the electric circuit
defined by Eqs. (1)–(4). For G ∈ (Gcrit, G

∗), the vec-
tor vs corresponds to the stable eigenvector (because of
lR{λ

(s)
1,2} < 0), whereas vp corresponds to the unstable

eigenvector (because of lR{λ
(p)
1,2} > 0). Equation (13)

expresses the state vector in terms of a superposition
involving the new coordinates s and p. In this context, s
and p are frequently referred to as amplitudes [1,13,18].
From Eqs. (6) and (13), it then follows that:

lim
t→∞X(t) = p(t)vp. (15)

Equation (15) states that vp determines an axis that
specifies in the x–u state space the orientation of the
stable limit cycle of the electric circuit. That is, the
relevant amplitude space is reduced from 2D (s and p)
to 1D (p only).

Let us illustrate the considerations made on the
Elwakil–Salama circuit by means of a numerical simu-
lation. We solved Eqs. (1) to (4) for Q = 5 ⇒ Gcrit =
0.02, G = 0.05 ⇒ G > Gcrit, ω0 = 1s−1 and initial
conditions x(0) = 0.25, y(0) = 0.01, u(0) = 0.25, and
v(0) = 0. The differential equations were solved by
means of a standard Euler forward scheme with fixed
time step of 0.001s. Figure 1 shows x,u (panel (a)) and
s, p (panel (b)) as functions of time. As expected, the
dynamics evolved towards a limit cycle with u(t) =
−x(t) and s = 0. Importantly, Fig. 2 demonstrates the
role of the unstable eigenvector vp. Panels (a) and (b)
show the phase curve u(x) in the x–u state space. Panel
(a) shows u(x) for the interval t = 0 to t = 19s. Panel
(b) shows the full-phase curve. vp is shown as well. As
can be seen, the phase curve converged towards the
direction of vp when time elapsed. As such, the cir-
cuit defined by Eqs. (1)–(4) can be described in the
4D space x, y, u, v or alternatively in the 4D space
x, u,dx/dt,du/dt. Panel (c) of Fig. 2 shows the sim-
ulated trajectory in the 3D subspace x, u,dx/dt. The
direction specified by the unstable eigenvector vp is
indicated in a x–u plane, as well. In panel (c), the stable
limit cycle can be clearly seen. As expected, we found
that the limit cycle was oriented in the 3D space along
vp. In other words, the limit cycle was located in a plane
determined by vp.

3 General coupled oscillators with limit
cycles specified by unstable eigenvectors

In this section, a general framework of coupled oscilla-
tors with limit cycles specified by unstable eigenvectors
is developed. To this end, we first return to the example
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Fig. 2 Simulation results (part 2) obtained for the Elwakil–Salama circuit (1)–(4). Panels a and b show simulated phase
curves u(x) (solid black lines) and the direction (dashed gray lines) defined by the unstable eigenvector vp in the 2D x–u
state space. Panel a shows a detail of panel b for the first 19 seconds of the simulation. Panel c shows the simulated
trajectory (solid black line) of the electric circuit in the 3D space spanned by x, u, dx/dt and the direction (dashed gray
line) of vp illustrated in a x–u plane. Panels a–c: The squares indicate the initial state used in the simulation. The figure
demonstrates that it is the unstable eigenvector vp (or order parameter) that characterizes the orientation of the limit cycle.
The figure illustrates graphically Eq. (15)

of the Elwakil–Salama circuit. As shown in Sect. 2, the
circuit (1)–(4) can be expressed in the 4D state space
x, u, dx/dt,du/dt by means of Eq. (5). Linearizing Eq.
(5) at x = u = 0, dx/dt = du/dt = 0, the linearized
evolution equations can be written like

d2

dt2
X = ω2

0

(
G − 1 −G
−G G − 1

)
X

+ω0

(
GQ − Q−1 −GQ

−GQ GQ − Q−1

)
d
dt

X. (16)

Importantly, Eq. (16) involves two matrices. Both
matrices exhibit the same eigenvectors, namely, v1 =
(1, 1)/

√
2 and v2 = (1,−1)/

√
2. They correspond to

the non-normalized eigenvectors reported in Eq. (14).
Since the Elwakil and Salama model exhibits as unsta-
ble eigenvector vp ∝ v2, from Eq. (15), it follows that
the stable limit cycle of the Elwakil–Salama circuit is
determined by the ”anti-diagonal axis” in the x–u space
(see also Fig. 2).

Let us derive a general framework of coupled oscilla-
tor systems for which the unstable eigenvector vp can
point in an arbitrary direction in the x–u state space,
such that those systems can exhibit stable limit cycles
that are oriented in arbitrary directions. The following
considerations apply to physical, chemical, and biologi-
cal systems in general and are not restricted to electric
circuits. Let x(t) and u(t) denote the state variables of

two coupled units that satisfy

d2

dt2
x = fx(x, u,dx/dt,du/dt),

d2

dt2
u = fu(x, u,dx/dt,du/dt), (17)

and exhibit the fixed point x = u = 0, dx/dt = du/dt =
0. Let X = (x, u) denote the 2D state vector. Then, the
linearized version of Eq. (17) at the fixed point can be
written like

d2

dt2
X = AX + B

d
dt

X, (18)

where A and B are 2 × 2 matrices. Next, we require
that the matrices A,B are simultaneously diagonal-
izable. Simultaneously, diagonalizable is the property
when two matrices are diagonalizable and exhibit the
same eigenvectors [40]. That is, A,B exhibit the prop-
erty that there exists a diagonalization matrix M , such
that

M−1AM = DA =
(

dAs 0
0 dAp

)
,

M−1BM = DB =
(

dBs 0
0 dBp

)
, (19)
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where DA and DB are diagonal matrices with diagonal
elements dAs, dAp and dBs, dBp, respectively. Moreover,
let vs and vp denote the column vectors that constitute
M like

M = (vs vp ) . (20)

Since (by assumption) M−1 exists, the two vectors vs

and vp are linearly independent. Then, it follows that
vs and vp are the eigenvectors of A and B and dZj are
the corresponding eigenvalues with Z = A,B and j =
s, p like Zvj = dZjvj (e.g., Avs = dAsvs). With the
help of Eqs. (19) and (20), Eq. (18) can be transformed
into diagonal form (see appendix 7.1)

d2

dt2
s = dAs s + dBs

d
dt

s,

d2

dt2
p = dAp p + dBp

d
dt

p. (21)

The eigenvalues of the two linear dynamical systems (s
and p) defined in Eq. (21) are given by

λ
(s)
1,2 =

dBs

2
±

√
d2
Bs

4
+ dAs,

λ
(p)
1,2 =

dBp

2
±

√
d2
Bp

4
+ dAp. (22)

Finally, the state X can be expressed in the basis of the
eigenvectors vs and vp with the help of the variables s
and p like

X(t) = s(t)vs + p(t)vp. (23)

As indicated in Sect. 2, we will refer to s and p as
amplitudes and the 2D s–p space as amplitude space
[1,13,18]. Equation (23) describes the mapping from
amplitude to state space.

In what follows, let us consider a Hopf bifurcation
scenario. Let us assume that there exists a bifurcation
parameter α in an interval D = [α1, α2] with a critical
value αcrit ∈ D. Let us assume that the coupled sys-
tem exhibits the property that lR{λ

(s)
1,2} < 0 holds for

any α ∈ D, whereas α < αcrit ⇒ lR{λ
(p)
1,2} < 0, α =

αcrit ⇒ lR{λ
(p)
1,2} = 0, and α > αcrit ⇒ lR{λ

(p)
1,2} > 0.

Finally, let us further assume that Imag{λ
(p)
1,2} �= 0

holds for α ∈ D. Then, a Hopf bifurcation takes place
at α = αcrit in the subsystem described by the vari-
able p. Moreover, the dynamics of the amplitude s
exhibits a stable fixed point. Therefore, the Hopf bifur-
cation in the p dynamics carries over to the original
4D system defined by Eq. (17). For α = αcrit, Eq.
(17) exhibits a Hopf bifurcation. The Hopf bifurcation
is characterized by the two eigenvectors vs and vp.
The vector vs describes a stable eigenvector (because
of lR{λ

(s)
1,2} < 0), whereas vp describes an unstable

eigenvector for α > αcrit (because of lR{λ
(p)
1,2} > 0 for

α > αcrit). For appropriate nonlinear terms in Eq. (17),
we re-obtain Eq. (15), which is here repeated as

lim
t→∞X(t) = p(t)vp. (24)

Furthermore, if for appropriate nonlinear terms, the p-
dynamics describes a stable limit cycle dynamics, then
the 4D system exhibits a stable limit cycle whose orien-
tation is determined by vp and dynamics is determined
by the amplitude p. The relevant amplitude dynamics
takes place in a 1D space, that is, in a reduced ampli-
tude space.

While the linear terms of the model allow us to iden-
tify the eigenvalues and eigenvectors and the stability
of the fixed point, the nonlinear terms determine the
approach towards the limit cycle attractor. Therefore,
let us turn next to the nonlinear terms. To this end, let
us re-write Eq. (17) in the form

d2

dt2
X = AX + B

d
dt

X + R(x, u,dx/dt,du/dt),

(25)

where R contains only nonlinear terms. Let us consider
the special case in which s(t) satisfies the linear dynam-
ics described in Eq. (21). That is, we need to add non-
linear terms only to the evolution equation of p shown
in Eq. (21). This implies that R shows in the direction
of vp like

R = vprp(x, u,dx/dt,du/dt). (26)

In the simplest, non-trivial case rp depends on p and
dp/dt only, such that

d2

dt2
X = AX + B

d
dt

X + vprp(p,dp/dt). (27)

For example, let us consider the van-der-Pol term
−ap2dp/dt and the Rayleigh term [39] −b(dp/dt)3. In
this case, from Eq. (27), we obtain as an intermediate
result

d2

dt2
X = AX + B

d
dt

X − vp

[
ap2dp/dt + b(dp/dt)3

]
.

(28)

To obtain an explicit, final form of the coupled oscillator
system, we need to express p in terms of x and u using
Eq. (96). To this end, we may use the bi-orthogonal
vectors ws and wp [1,18,41] (for details see appendix
7.2).

From our considerations above, it follows that the
dynamics of s and p is given by:

d2

dt2
s = dAs s + dBs

d
dt

s, (29)
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Fig. 3 Simulation results (part 1) of the coupled oscillator model (99) in the case of the orthogonal basis given by Eq.
(33). Panel a: x (solid line) and u (dotted line) as functions of time. The horizontal bar starting at t = 30s reflects γxmax,
where xmax is the maximal value of x obtained numerically during the simulation period and γ = vpu/vp,x (see also Eq.
34). Panel b: s and p over time. The figure demonstrates for a generic system of two coupled nonlinear oscillators (17)
with state variables x and u that under appropriate conditions, only a single variable, namely, the unstable amplitude p, is
needed to characterize the limit cycle dynamics. For parameters and initial conditions, see text

d2

dt2
p = dAp p + dBp

d
dt

p − ap2 d
dt

p − b

(
d
dt

p

)3

.

(30)

Assuming that the assumptions λ
(s)
1,2 and λ

(p)
1,2 at α >

αcrit of the aforementioned Hopf bifurcation scenario
hold, then Eq. (99) describes a coupled oscillator system
that exhibits a stable limit cycle determined by Eq. (24)
that is characterized by the unstable vector vp, on the
one hand, and the van-der-Pol-Rayleigh dynamics of
p(t), on the other hand. The latter is defined by Eq.
(30).

In general, vs and vp are (by definition) linearly inde-
pendent vectors (see above). In the special case when
vs and vp constitute a pair of orthogonal vectors, the
matrix M assumes the form of the 2D rotation matrix

M =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, (31)

involving the angle θ, such that

vs =
(

cos(θ)
sin(θ)

)
, vp =

(− sin(θ)
cos(θ)

)
. (32)

Since the basis is an orthogonal basis, the bi-orthogonal
vectors are given by ws = vs and wp = vp.

First, let us illustrate by means of a numerical simula-
tion the special case of an orthogonal basis. We solved
numerically (Euler forward scheme with fixed single
time step of 0.001s) the coupled oscillator model (99) for
dAs = −1/s2, dAp = −2/s2, dBs = −0.5/s, dBp = 0.1/s,
θ = 100◦, a = 0 and b = 1s. Consequently, the eigen-
values were λ

(s)
1,2 = −0.25 ± i0.25

√
15 per second and

λ
(p)
1,2 = 0.05± i

√
1.9975 per second, such that vs and vp

corresponded to the stable and unstable eigenvectors,
respectively. Explicitly, the vectors with θ = 100◦ were

given by

vs =
(

cos(100◦)
sin(100◦)

)
=

(−0.17
0.98

)
,

vp =
(− sin(100◦)

cos(100◦)

)
=

(−0.98
−0.17

)
. (33)

The vectors (33) were used as coefficients of the matrix
M (see Eq. (31)). The matrices A and B occurring
in Eq. (99) were then computed from the diagonal
matrices DA and DB (whose coefficients are listed
above) by inverting the steps shown in Eq. (19). That
is, A = MDAM−1 and B = MDBM−1. The bi-
orthogonal vector wp in Eq. (99) was simply given by
vp as discussed above. The following initial conditions
were used: x(0) = 0.1, dx(0)/dt = 0, u(0) = −0.15,
and du(0)/dt = 0. Figures 3 and 4 present the sim-
ulation results. Panel (a) of Fig. 3 shows x and u as
functions of time. It can be seen that the dynamics con-
verged towards a stable limit cycle dynamics. Panel (b)
shows the variables s and p over time. As expected, s
converged towards zero, whereas p approached a stable
limit cycle dynamics. Figure 4 shows the oscillator sys-
tem dynamics in 2D (panels (a) and (b)) and 3D (panel
(c)) state spaces. Panel (a) show the phase curve u(x)
for the first 11 s, whereas panel (b) shows the entire
simulated trajectory. The directions specified by vec-
tors vs and vp are shown in panels (a) and (b), as well.
By construction, vs and vp define axes at angles of
100◦ and 10◦, respectively, with respect to the horizon-
tal axis (i.e., the x axis). As can be seen in panels (a)
and (b), after a transient period, the phase curve u(x)
approached the axis defined by the unstable eigenvec-
tor vp. Subsequently, the dynamics took place along
the axis specified by vp as predicted by Eq. (24). Panel
(c) reveals the shape of the limit cycle in the 3D space
given by x,u and dx/dt. vp is drawn in an x–u plane,
as well. Panel (c) demonstrates that in the 3D space
spanned by x, u, and dx/dt, the limit cycle is located
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Fig. 4 Simulation results (part 2) of the coupled oscillator model (99) in the case of the orthogonal basis given by Eq.
(33). Panels a and b show simulated phase curves u(x) (solid black lines) and the axes given by the eigenvectors vs and vp

(dashed gray lines) in the 2D x–u state space. Panel a shows a detail of panel b for the first 11 seconds of the simulation.
Panel c shows the simulated trajectory (solid black line) of the coupled oscillator system in the 3D space spanned by
x, u, dx/dt. The axis of vp (dashed gray line) is plotted in a x–u plane as well. Panels a–c: The squares indicate the initial
state used in the simulation. The figure demonstrates that the orientation of the limit cycle is entirely determined by the
unstable eigenvector vp and, in doing so, exemplified and visualizes Eq. (24)

Fig. 5 Simulation results (part 1) of the coupled oscillator model (99) in the case of the non-orthogonal basis given by Eq.
(35). Panel a: x (solid line) and u (dotted line) as functions of time. The horizontal bar starting at t = 30s reflects |γ|xmax

and predicts umax. Panel b: s and p over time. For parameters and initial conditions, see text

in a plane specified by the vp axis. Note that (as men-
tioned above), we used the simulation parameters a = 0
and b > 0. Consequently, the limit cycle dynamics was
determined by a Rayleigh limit cycle oscillator.

From Eq. (24), it follows that on the limit cycle:

x(t)vp,u = u(t)vp,x ⇒ u(t) = γx(t), (34)

holds with γ = vp,u/vp,x. From Eq. (33) for the
simulation shown in Figs. 3 and 4, we get γ =
− cos(100◦)/ sin(100◦) ≈ 0.18. That is, the oscillation
amplitude of u should be about 5 times smaller as com-
pared to the amplitude of x. In panel (a) of Fig. 3 the
maximal value of u predicted from γ is shown as hor-

izontal bar (starting at t = 30s). We found that the
numerical maximal values of u(t) fitted very well the
theoretical ones.

Next, let us illustrate the general case of a non-
orthogonal basis by means of a numerical simulation
(to this end, again, an Euler forward scheme with time
step 0.001s was used). In this case, the model involves
bi-orthogonal vectors as discussed in the appendix 7.2.
We solved Eq. (99) (see again appendix 7.2) for the
same diagonal matrices DA and DB as in the previous
example. That is, we used dAs = −1/s2, dAp = −2/s2,
dBs = −0.5/s, and dBp = 0.1/s. Consequently, the
eigenvalue were again given by λ

(s)
1,2 = −0.25±i0.25

√
15
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per second and λ
(p)
1,2 = 0.05 ± i

√
1.9975 per second. We

also considered again the Rayleigh oscillator case with
a = 0 and b = 1s. However, in this second simulation,
the eigenvectors were not defined by Eq. (32). Rather,
for the simulation, we used

vs =
1√
2

(−1
1

)
, vp =

1√
17

(−1
4

)
. (35)

The vectors are linearly independent, but they are not
orthogonal. The same initial conditions were used as
in the previous simulation. From Eqs. (29) and (30),
it then follows that the s and p amplitude dynamics
of this second simulation should be identical to the s
and p amplitude dynamics of the previous simulation.
In contrast, the dynamics of the state variables x and u
should differ across the two simulations. The matrices
A and B of Eq. (99) were computed again from A =
MDAM−1 and B = MDBM−1 with M defined by Eq.
(20). Moreover, wp of Eq. (99) was taken as the second
row vector of M−1 as discussed above (or see again
Refs. [18,19]).

Figures 5 and 6 present the simulation results. The
panels of Figs. 5 and 6 present the same kind of vari-
ables and quantities as the panels of Figs. 3 and 4.
As can be seen in Fig. 5, as expected, x(t) and u(t)
approached a limit cycle dynamics with s = 0. In par-
ticular, as discussed above, we found that the dynamics
of s and p in this second simulation was identical to the
s and p dynamics of the previous simulation [compare
panels (b) of Figs. 3 and 5]. Moreover, for this second
simulation, Eq. (34) predicts that on the limit cycle,
the peak values umax are 4 times larger than the peak
values of xmax because γ = vp,u/vp,x = −4. We found
that this was indeed the case [see the horizontal bar in
panel (a) of Fig. 5]. Moreover, u and x exhibited an anti-
phase synchronization consistent with γ < 0. Panel (a)
of Fig. 6 illustrates the non-orthogonal basis spanned
by vs and vp. As predicted by Eq. (24), irrespective of
the fact that vs and vp were non-orthogonal, the sim-
ulated trajectory converged over time towards the axis
defined by vp. Panel (c) depicts the shape of the limit
cycle in the 3D space given by x, u and dx/dt. For com-
parison purposes, vp is drawn in an x–u plane of the
3D space. Just as for the previous simulation, panel (c)
of Fig. 6 demonstrates for the second simulation that
the limit cycle in the 3D space spanned by x, u, and
dx/dt is located in a plane specified by the vp axis.

Our approach applies to nonlinear systems whose
linearized evolution equations exhibit simultaneously
diagonalizable matrices. Let us briefly dwell on implica-
tions of this requirement. Obviously, on the one hand,
this constraint implies that the approach does not apply
to all kind of dynamical systems. However, on the other
hand, it does not necessarily require that we discuss
coupled identical systems as it was the case for the
Elwakil–Salama model (see Eqs. (1)–(4)). Let us illus-
trate this point for coupled second-order systems that
satisfy Eq. (17). The corresponding linearized evolution
equation in the most general case involves 8 indepen-

dent coefficients ajk and bjk with j, k = 1, 2 that corre-
spond to the matrix elements of A and B, respectively.
If we deal with two coupled identical oscillators, then
Eq. (18) reads explicitly

d2

dt2
x = a11x + a12u + b11

d
dt

x + b12
d
dt

u,

d2

dt2
u = a12x + a11u + b12

d
dt

x + b11
d
dt

u, (36)

and involves only 4 independent coefficients. In con-
trast, if the two matrices A and B occurring in Eq.
(18) can be simultaneously diagonalized, then they can
exhibit up to 6 independent coefficients. These coef-
ficients can be expressed in terms of the 4 diagonal
elements dAs, dAp, dBs, dBp, the independent vec-
tor element vs,x and the independent vector element
vp,x. Note that vs,u and likewise vp,u are not indepen-
dent coefficients due to the normalization constraint. In
other words, from Eq. (19), it follows that A and B can
expressed like

A(dAs, dAp, dBs, dBp, vs,x, vp,x) = MDAM−1,

B(dAs, dAp, dBs, dBp, vs,x, vp,x) = MDBM−1.

(37)

In conclusion, the systems that can be addressed by our
suggested approach are more general than systems com-
posed of coupled identical units but less general than
the most general case of systems. Let us exemplify these
considerations for the numerical simulations presented
above. For the first model whose solutions are displayed
in Fig. 3 and 4 and involves the orthogonal basis (33),
the linearized model (18) reads explicitly

d2

dt2
x =

−1.97s−2x − 0.17s−2u + 0.08s−1 d
dt

x + 0.10s−1 d
dt

u,

d2

dt2
u =

−0.17s−2x − 1.03s−2u + 0.10s−1 d
dt

x − 0.48s−1 d
dt

u.

(38)

The two coupled units exhibit the same off-diagonal
coefficients (i.e., the same coupling coefficients). How-
ever, they exhibit different diagonal elements. For the
second model whose solutions are displayed in Fig. 5
and 6 and involves the non-orthogonal basis (35), the
linearized model (18) reads

d2

dt2
x =

−0.67s−2x + 0.33s−2u − 0.70s−1 d
dt

x − 0.20s−1 d
dt

u,
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Fig. 6 Simulation results (part 2) of the coupled oscillator model (99) in the case of the non-orthogonal basis given by
Eq. (35). Panels a–c of Fig. 6 show the same kind of variables and quantities as the respective panels in Fig. 4. As far as
panel a is concerned, u(x) for the first 5 s of the 50 s simulation is shown

d2

dt2
u =

−1.33s−2x − 2.33s−2u + 0.80s−1 d
dt

x + 0.30s−1 d
dt

u.

(39)

All eight coefficients differ from each other, which
demonstrates again that the approach does not require
that we consider coupled identical units. Note that
while the numerical values of all eight coefficient dif-
fer, the maximal number of independent coefficients of
the linearized model is six. That is, the eight values
shown in Eq. (39) have been computed from the six
independent values dAs, dAp, dBs, dBp, vs,x, and vp,x
listed above.

4 Further applications

4.1 Coupled Fitzhugh–Nagumo neurons

The Fitzhugh–Nagumo model is a limit cycle oscil-
lator model that describes periodically firing neurons
[39,42,43]. That is, each round-trip through the limit
cycle is interpreted as a spiking of a neuron and a
subsequent refractory phase of the neuron. Coupled
Fitzhugh–Nagumo neurons have been discussed in the
literature in the context of synchronized and chaotic
brain activity (see, e.g., Refs. [30–33]) and, in partic-
ular, in the context of chimera states [34,35]. A linear
coupling between the two neurons has frequently used.
In what follows, two coupled Fitzhugh–Nagumo neu-
rons are considered, where x, y denote the state vari-

ables of the first neuron and u, v denote the variables
of the second neuron. The coupled neuron model reads

d
dt

x = y − F (x) − D(x − u), (40)

d
dt

y = −x − cy, (41)

d
dt

u = v − F (u) − D(u − x), (42)

d
dt

v = −u − cv, (43)

and involves a linear coupling term with D > 0. The
function F is frequently taken as a cubic nonlinearity
of the form F (z) = a(z3 − 3z) with a > 0 [39]. In this
context, a may be consider as some kind of pumping
parameter. In contrast, c may be interpreted as damp-
ing parameter (see also the eigenvalue analysis below).
As far as the measurement units of the model vari-
ables are concerned, the variables x, u may be regarded
as voltage-like variables measured in Volt, while y, v
may be considered as current-like variables measured in
Ampere. However, frequently, Fitzhugh–Nagumo neu-
rons are model by means of dimensionless variables.
Accordingly, in what follows, the state variables x, y,
u, v will be considered as dimensionless quantities. The
model defined by Eqs. (40)–(43) can be equivalently
expressed as

d2

dt2
x = −(1 − 3ca)x − cax3 + (3a − c − 3ax2)

d
dt

x

−cD(x − u) − D

(
d
dt

x − d
dt

u

)
,
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Fig. 7 Simulation results (part 1) of the coupled neuron model (40)–(43). Panel a: x (solid black line) and u (dotted gray
line) as functions of time. Panel b: s and p over time. The figure illustrates that while from a state space perspective (panel
a), the model describes synchronized neural activity in terms of two synchronized neural signals x and u, the amplitude
space perspective (panel b) uncovers that in fact the coupled system exhibits a single dominant variable p (the unstable
amplitude) that ”drives” and determines the synchronization of x and u observed in the state space. For parameters and
initial conditions, see text

d2

dt2
u = −(1 − 3ca)u − cau3 + (3a − c − 3au2)

d
dt

u

−cD(u − x) − D

(
d
dt

u − d
dt

x

)
. (44)

Equation (44) is an important intermediate result,
because it shows that the coupled neuron model
assumes the general form (25) and it allows us to intro-
duce two new variables, which we will do next. Intro-
ducing the variables s = x − u and p = x + u, from Eq.
(44), we obtain

d2

dt2
s = −(1 − 3ca + 2cD)s − (2D + c − 3a)

d
dt

s

+rs(s, p,ds/dt,dp/dt),

d2

dt2
p = −(1 − 3ca)p + (3a − c)

d
dt

p

+rp(s, p,ds/dt,dp/dt), (45)

where rs and rp are nonlinear terms. From Eq. (21) and
(22) and the linear parts in Eq. (45), it follows that the
eigenvalues read:

λ
(s)
1,2 =

−2D + c − 3a

2
±

√
(2D + c − 3a)2

4
+ 3ca−(1 + 2cD),

λ
(p)
1,2 =

3a − c

2
±

√
(3a − c)2

4
+ 3ca − 1. (46)

For the current study, it is sufficient to consider the case
discussed by Jenkins [39] with c < 1 and a < 1/(3c).
The latter condition implies that the expression 1−3ac
occurring in Eqs. (45) and (46) is positive. In this case,

from Eq. (46), it follows that for

c

3
< a <

2D + c

3
, (47)

the eigenvalues λ
(s)
1,2 are either real and negative or they

are complex-valued and exhibit negative real parts.
Moreover, λ

(p)
1,2 are either real and positive or they are

complex-valued and exhibit positive real parts. Con-
sequently, the variable s describes a stable dynam-
ics towards s = 0 (at least in the linear domain),
whereas the variable p describes an unstable dynam-
ics. The inequality (47) refers to a coupled neuron sys-
tem for which the pumping parameter a is sufficiently
large relative to the damping parameter c, such that
a > c/3 holds. However, the coupling between the neu-
rons as measured by D is sufficiently strong relative
to the individual pumping a of the neurons, such that
(2D+c)/3 > a holds. In this case, from lR{λ

(s)
1,2} < 0, it

follows that for appropriately chosen model parameters,
the variable s converges to zero. If so, the dynamics of
p(t) is determined by

d2

dt2
p = −(1 − 3ca)p − ca

4
p3

+
(

3a − c − 3a

4
p2

)
d
dt

p, (48)

which is the equation of a van-der-Pol oscillator with
potential V (p) = 0.5(1 − 3ca)2p2 + cap4/16. The 2D
state vector X = (x, u) can be expressed like

X(t) = s(t)vs + p(t)vp, (49)

with

vs =
1
2

(
1

−1

)
, vp =

1
2

(
1
1

)
. (50)
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The vectors correspond to the eigenvectors of the simul-
taneously diagonalizable matrices A and B of the lin-
ear parts of Eq. (44), and in view of Eq. (49), s and
p are considered as the amplitudes of the coupled neu-
ron model. Since s → 0 for t → ∞ holds under the
aforementioned conditions, Eq. (49) leads to Eq. (24)
again. Accordingly to Eq. (24), the orientation of the
stable limit cycle is determined by the unstable (non-
normalized) eigenvector vp as defined in Eq. (50). The
dynamics on the limit cycle is determined by Eq. (48).

To illustrate these properties of two coupled Fitzhugh–
Nagumo neurons, we simulated the model (40)–(43)
(with the help of an Euler forward scheme with time
step 0.001s) for the parameters a = 0.5/s, c = 0.1/s,
and D = 1/s, such that Eq. (47) was satisfied with
0.1/3 < 0.5 < 2.1/3 = 0.7 and the eigenvalues were
given by λ

(s)
1,2 = −0.3 ± i

√
0.96 per second and λ

(p)
1,2 =

0.7 ± i0.6 per second. Furthermore, we used the ini-
tial conditions x(0) = 0.7, y(0) = 0.1, u(0) = −0.6,
and v(0) = −0.1. Figures 7 and 8 present the simula-
tion results. Figure 7 presents x,u (panel (a)) and s, p
(panel (b)) as functions of time. The neuron dynam-
ics evolved relatively quickly towards a limit cycle with
u(t) = x(t) and s = 0. Panels (a) and (b) of Fig. 8
present the stable and unstable axes defined by vs and
vp and the neural dynamics in terms of the phase curve
x(u) for the first 7.5 s (panel (a)) and the entire sim-
ulation duration (panel (b)). As can be seen, the sim-
ulated neural dynamics approached the axis given by
vp, which is consistent with Eq. (24). Panel (c) of Fig.
8 presents the simulated trajectory in the 3D subspace
x, u,dx/dt. The stable limit cycle can be clearly seen.
The limit cycle was oriented along the direction speci-
fied by vp.

4.2 Coupled Goodwin oscillators: synchronized
inter-cellular gene regulation

One of the earliest models that describes oscillatory
gene regulation within a single cell is the Goodwin
oscillator [44–46]. The three-variable Goodwin oscilla-
tor reads [44,45]

1
k

d
dt

x1 = αf(x3) − x1, (51)

1
k

d
dt

x2 = x1 − x2, (52)

1
k

d
dt

x3 = x2 − x3, (53)

with k > 0 and α > 0. In Eqs. (51)–(53), the variables
x1, x2, x3 denote re-scaled quantities and describe a
gene regulation loop in terms of the amount of mRNA
(x1) produced by a DNA promoter, the amount of inac-
tive proteins (x2) produced from the mRNA, and the
amount of active (or activated) proteins (x3) obtained
from the inactive proteins. The active proteins regu-
late the promoter via the function f . In what follows,

a Hill-type function f of the form: [45,47,48]

f(x) =
1

1 +
(
x
B

)n , (54)

with B > 0 and n > 0 will be used, where n is an
integer. It is possible to rescale the variables even fur-
ther, such that k = 1 and B = 1 [45]. However, for the
purpose of conducting numerical simulations, it is more
convenient to keep the parameters in the analytical con-
siderations. As such, k can be used to adjust the time
scale of the dynamics. The parameters B and α deter-
mine the fixed point of the regulatory unit (see below).
Following earlier work in which the Goodwin model has
been studied in detail (see e.g., Refs. [38,45,47]), we will
briefly analyze some key features of the particular ver-
sion of the Goodwin model defined by Eqs. (51)–(54).
The fixed point of the model (51)–(54) is given by

x1 = x2 = x3 = xst, X =
xst

B
, X(1 + Xn) =

α

B
.

(55)

Equations (51)–(53) can be written as a third-order dif-
ferential equation of the form

d3

dt3
x3 = −3k

d2

dt2
x3 − 3k2 d

dt
x3 − k3x3 + k3αf(x3).

(56)

Let uj denote deviations from the fixed point value like
xj = xst + uj . Then, the linearized version of Eq. (56)
reads

d3

dt3
u3 = −3k

d2

dt2
u3 − 3k2 d

dt
u3 − k3(1 + G)u3, (57)

with

G =
nxn+1

st

αBn
=

nB

α
Xn+1 > 0. (58)

Using Eq. (55), we obtain

G = n
Xn

1 + Xn
. (59)

The eigenvalues of Eq. (57) are given by λ1 = −k(1 +
3
√

G) < 0 and

1
k

λ2,3 = −1 + 3
√

G

(
1 ± i

√
3

2

)

. (60)

Consequently, for G < 8, G = 8, G > 8, the real parts of
λ2,3 are negative, zero, and positive, respectively. This
implies that a Hopf bifurcation takes place at G = Gcrit

with Gcrit = 8. From Eq. (55), it follows that X
increases monotonically as a function of α/B. Likewise,
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Fig. 8 Simulation results (part 2) of the coupled neuron model (40)–(43). Panels a and b show simulated phase curves
u(x) (solid black lines) and the axes given by the eigenvectors vs and vp (dashed gray lines) in the 2D x–u state space.
Panel a shows a detail of panel b for the first 7.5 s of the simulation. Panel c shows the simulated trajectory (solid black
line) of the coupled neuron model in the 3D space spanned by x, u, dx/dt. The axis of vp (dashed gray line) is plotted in
a x–u plane as well. Panels a–c: The squares indicate the initial state used in the simulation. The figure demonstrates
that the neural two units’ system exhibits an underlying unstable amplitude vp (or order parameter) that determines the
orientation of the limit cycle in state space. In doing so, the figure exemplifies Eq. (24) for the concrete application of two
coupled Fitzhugh–Nagumo neurons (40)–(43)

from Eq. (59), it follows that G increases monotonically
as a function of X. Consequently, G increases monoton-
ically as function of the ratio α/B and the ratio α/B
may be considered as bifurcation parameter. Note that
from Eq. (59) and the requirement G > 8 for an unsta-
ble fixed point, it follows that nXn/(1+Xn) > 8. Since
1 + Xn > Xn holds, the inequality nXn/(1 + Xn) > 8
cannot be satisfied for n = 1, . . . , 8. The smallest pos-
sible integer that allows for G > 8 is n = 9, which is
a key observation that has been made in the previous
literature [38,45,47].

Coupled Goodwin oscillators have been considered in
various studies. In his benchmark study, Goodwin [44]
considered the gene regulation within cells by means
of two coupled pathways. More recent, gene regula-
tion across cells (i.e., inter-cellular interactions between
cells) have been modeled by means of coupled Goodwin
oscillators [36–38]. In line with those studies, in what
follows, two cells are considered that produce proteins
Z1 (cell 1) and Z2 (cell 2), respectively. The active forms
of the proteins are given in the amount x3 (cell 1) and
y3 (cell 2). Previous work suggest that when the pro-
tein produced by one cell act as repressors of the pro-
moter activity of the other cell, then the two cells under
appropriate conditions can synchronize their oscillatory
activity [37]. In what follows, the approach presented
in the previous sections will be used to examine this
proposed mechanism of synchronized inter-cellular gene
regulation. The aim is to illustrate the basic idea. For
this purpose, it is sufficient to consider a simplified

model in which the uncoupled gene regulation loops
of the proteins Z1 and Z2 exhibit the same fixed points
xst. Moreover, the repressor impact h from one cell onto
the other cell will be described by a linearized function
and is assumed to leave the fixed point xst unaffected.
This implies that the feedback function that describes
the interactions between the cells reads

h(z) = 1 − ε

xst
(z − xst), (61)

with ε > 0. Accordingly, the gene regulatory system
composed of the two coupled cells reads

1
k

d
dt

x1 = αf(x3)h(y3) − x1, (62)

1
k

d
dt

x2 = x1 − x2, (63)

1
k

d
dt

x3 = x2 − x3, (64)

1
k

d
dt

y1 = αf(y3)h(x3) − y1, (65)

1
k

d
dt

y2 = y1 − y2, (66)

1
k

d
dt

y3 = y2 − y3. (67)

The following two steps are conducted to introduce
two new variables s and p, again, as in the previous
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examples. First, the model is written in terms of third-
order differential equations that read

d3

dt3
x3 = −3k

d2

dt2
x3 − 3k2 d

dt
x3 − k3x3 + k3αf(x3)h(y3),

d3

dt3
y3 = −3k

d2

dt2
y3 − 3k2 d

dt
y3 − k3y3 + k3αf(y3)h(x3).

(68)

Second, we introduce the deviations uj and wj defined
by xj = xst + uj and yj = xst + wj , respectively. Then,
the coupled linearized equations read

d3

dt3
u3 = −3k

d2

dt2
u3 − 3k2 d

dt
u3 − k3(1 + G)u3 − k3εw3,

d3

dt3
w3 = −3k

d2

dt2
w3 − 3k2 d

dt
w3 − k3(1 + G)w3 − k3εu3.

(69)

Let us define s and p like s = x3 − y3 = u3 − w3 and
p = x3 + y3 − 2xst = u3 + w3. Then, the linearized
evolution equations of s and p are given by

d3

dt3
s = −3k

d2

dt2
s − 3k2 d

dt
s − k3s − k3(G − ε)s,

d3

dt3
p = −3k

d2

dt2
p − 3k2 d

dt
p − k3p − k3(G + ε)p.

(70)

The eigenvalues read λ
(s)
1 = −k(1 + 3

√
G − ε) < 0

(assuming G − ε > 0), λ
(p)
1 = −k(1 + 3

√
G + ε) < 0

and

1
k

λ
(s)
2,3 = −1 + 3

√
G − ε

(
1 ± i

√
3

2

)

,

1
k

λ
(p)
2,3 = −1 + 3

√
G + ε

(
1 ± i

√
3

2

)

. (71)

In the context of the current work, the case of interest
is given by

0 < G − ε < 8 < G + ε. (72)

In this case, the eigenvalues satisfy lR{λ
(s)
2,3} < 0 and

lR{λ
(p)
2,3} > 0, such that the variable s describes a

stable dynamics approaching s = 0 (at least as long
as the linearized equations hold), whereas the vari-
able p describes an unstable dynamics characterized by
an initial exponential increase of p. The state vector
X = (x, u) can be expressed like

X(t) = Xst + s(t)vs + p(t)vp, (73)

with

Xst =
(

xst

xst

)
, vs =

1
2

(
1

−1

)
, vp =

1
2

(
1
1

)
,

(74)

and motivates to consider s and p as amplitudes. If (in
view of the negative real parts of the eigenvalues λ

(s)
1

and λ
(s)
2,3) s → 0 for t → ∞ holds, then, in analogy to

Eq. (24), from Eq. (73), it follows that:

lim
t→∞X(t) = Xst + p(t)vp. (75)

Accordingly, the orientation of the stable limit cycle is
determined by the unstable (non-normalized) eigenvec-
tor vp. Substituting s = 0 into the nonlinear evolution
equation of p(t) [that can be derived from Eq. (68)], we
conclude that in this case, the dynamics on the limit
cycle is determined by

d3

dt3
p = −3k

d2

dt2
p − 3k2 d

dt
p − k3p

+2k3αf
(p

2
+ xst

)
g

(p

2
+ xst

)
− 2k3xst.

(76)

To illustrate these considerations, we solved Eqs.
(62)–(67) for n = 9, α = 2, B = 0.1, and ε = 1 which
implies xst ≈ 0.13 and G ≈ 8.40 such that the inequal-
ity (72) was satisfied like 0 < G − ε = 7.4 < 8 <
G + ε = 9.4. Since the Goodwin oscillator has been
frequently discussed in the context of circadian rhyth-
mic activity on the cellular level that is autonomous
(and not driven by the day–night cycle) [36,46,49], we
selected the parameter k as k = 4/d, such that the
model produced oscillations with a period of approx-
imately 1 day. Finally, the following initial conditions
were used: x1(0) = x2(0) = x3(0) = 0.1 and y1(0) = 0,
y2(0) = 0.1, y3(0) = 0.3. For simulation purposes, an
Euler forward scheme was used with fixed time step of
0.001d. Figures 9 and 10 present the simulation results.

Figure 9 presents the solutions x3(t), y3(t) (panel (a))
and s(t), p(t) (panel (b)). As expected, the gene regu-
latory system evolved towards a limit cycle reflecting
a synchronized state with y3(t) = x3(t) and s = 0.
Panels (a) and (b) of Fig. 10 present the unstable axis
given by vp and the phase curves y3(x3) for the first 5
days (panel (a)) and the entire simulation period of 10
days (panel (b)). We found that the simulated dynam-
ics approached the axis given by vp as predicted by Eq.
(75). Panel (c) of Fig. 10 presents the simulated tra-
jectory in the 3D subspace x3, y3,dx3/dt together with
the direction specified by vp. We found that the stable
limit cycle was clearly oriented along vp.

While Fig. 10 demonstrates the spatial aspect of Eq.
(75) about the orientation of the limit cycle in the x–
u space, let us illustrate more explicitly the dynamic
aspect of Eq. (75). Accordingly, the dynamics in the
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Fig. 9 Simulation results (part 1) of the coupled Goodwin oscillator model (62)–(67). Panel a: x3 (solid black line) and
y3 (dotted gray line) as functions of time. Panel b: s and p over time. The figure illustrates for the model (62)–(67) the
existence of a single dominating amplitude p (panel b) that underlies the synchronized limit cycle gene regulatory activity
observed on the state variable level (panel a). For parameters and initial conditions, see text

Fig. 10 Simulation results (part 2) of the coupled Goodwin oscillator model (62)–(67). Panels a and b show simulated
phase curves y3(x3) (solid black lines) in the 2D x3–y3 state space and the unstable eigenvector axis vp (dashed gray lines).
Panel a shows a detail of panel b for the first 5 days of the simulation. Panel c shows the simulated trajectory (solid black
line) of the model in the 3D space spanned by x3, y3, dx3/dt. The axis of vp (dashed gray line) is plotted in a x3–y3 plane,
as well. Panels a–c: The squares indicate the initial state used in the simulation. The figure demonstrates that irrespective
the fact that the coupled Goodwin oscillator model involves third-order oscillators and not second-order oscillators as in
the previous examples, the model exhibits an unstable eigenvector (vp) that specifies a direction (panels b) and a plane
(panel (c)), in which the gene regulatory limit cycle activity can be found

reduced amplitude space given by the unstable ampli-
tude p entirely determines the dynamics X on the limit
cycle. To this end, let us compare p(t) as obtained from
p(x, u) = wpX(t) with p(t) as computed from Eq. (76).
Equation (76) was solved numerically in terms of three
coupled first-order differential equations with z3 = p,
z2 = dp/dt, and z1 = d2p/dt2, which are related to
the original state variables like z3 = p = x3 + y3 − 2xst,
z2 = x2−x3+y2−y3, and z1 = x1+x3+y1+y3. We solve
the original model (62)–(67) for the same parameters
and initial conditions as used in the previous simula-
tion but for a longer duration of T = 30 s to make sure

that the dynamics approached the stable limit cycle.
Furthermore, we solve Eq. (76) in terms of z3, z2, z1,
for the same parameters and initial conditions and the
same simulation duration. Figure 11 shows the stable
limit cycle in the space dp/dt–p space (i.e., z2–z3 space)
as obtained from the last 10s interval of the 30 s simula-
tion of (62)–(67) and as obtained from the same last 10
s interval of the simulation of Eq. (76). As can be seen
in Fig. 11, the solutions obtained by the two methods
were identical, as expected.
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Fig. 11 Comparison of the limit cycle dynamics obtained
from the full Goodwin model (62)–(67) and the ampli-
tude equation (76): dp(x(t), u(t))/dt versus p(x(t), u(t))
computed from Eq. (62)–(67) (solid thick black line) and
dp(t)/dt versus p(t) computed from Eq. (76) (dotted gray
line) are shown. The first 20s of the 30 s-long simulation
were removed. Only the dynamics during the last 10 s inter-
val is shown. See text for details. The figure illustrates
that the closed evolution equation for the unstable ampli-
tude (76) is sufficient to describe the evolution of the system
along its limit cycle. In doing so, the figure also provides a
graphical illustration of Eq. (75)

5 Generalizations

5.1 When s does not vanish but corresponds to a
“fast” variable

In the previous sections, systems have been discussed
for which the unstable eigenvector vp and the associ-
ated amplitude p entirely determine the systems’ limit
cycles. In the case of more general systems, both sta-
ble and unstable eigenvectors and their amplitudes con-
tribute to the overall emerging pattern or organization.
Typically, the unstable eigenvectors and their ampli-
tudes make the major contributions, while the stable
eigenvectors and their amplitudes make minor contri-
butions [1,13]. Nevertheless, these minor contributions
do not vanish. Of particular interest is the case when the
stable amplitudes evolve relatively quickly as compared
to the unstable amplitudes [1,13]. The following consid-
erations exemplify this situation for the general coupled
oscillator model outlined in Sect. 3. While in Sect. 3,
examples have been addressed for which the dynamics
of the stable amplitude s does not depend on the unsta-
ble amplitude p, we consider next the case in which the
dynamics of s is coupled to p. Let us consider the fun-
damental example of a negative-feedback loop in which
the unstable amplitude ”pumps” the stable amplitude,
while the stable amplitude leads to a damping of the
unstable amplitude [13, Chap 4.]. Accordingly, in Eq.
(29), we add on the right-hand-side a driving force p,
while in Eq. (30), we replace the van-der-Pol damp-
ing term with a mixed term −as2dp/dt, such that the
amplitude equations read

d2

dt2
s = dAs s + dBs

d
dt

s + c p, (77)

d2

dt2
p = dAp p + dBp

d
dt

p − as2 d
dt

p, (78)

with dAs, dBs < 0, dAp < 0, dBp > 0, and a, c > 0. In
terms of the state variables x, u,dx/dt,du/dt, we con-
sider a model that assumes the form (25). To simplify
the presentation, we consider the special case of a sys-
tem involving orthogonal eigenvectors (the general case
that involves non-orthogonal vectors can be worked out
in analogy to the example given in appendix 7.2). In
this case, the expressions p and dp/dt can be computed
from p(t) = vpX(t) and dp/dt = vpdX(t)/dt. Conse-
quently, on the level of the state variables x, u, dx/dt,
and du/dt, the amplitude equation model given by Eqs.
(77) and (78) reads

d2

dt2
X = AX + B

d
dt

X

−avp(vsX)2
(
vp

d
dt

X
)

+ cvs (vpX) .

(79)

As such, the solution of Eq. (77) can be found with
the help of a Green’s function (or response function)
G(z) [24,50] like s(t) = sh(t) + sp(t) and sp(t) =∫ t

0
G(t−t′)p(t′)dt′, where sh and sp denote the homoge-

neous and particular solutions, respectively. However, s
is assumed to evolve on a short time scale relative to p,
which implies that sh decays to zero relatively quickly
and can be neglected. As far as sp is concerned, since
s describes a damped harmonic oscillator driven by p
(see Eq. (77)), s follows p with a short delay τ . When
assuming that oscillations of p are relatively small in
magnitude, such that p(t) describes an approximately
sinusoidal oscillation, then s can be expressed in terms
of p like

s(t) ≈ fp(t − τ) ≈ f

(
p(t) − τ

d
dt

p(t)
)

, (80)

where f is proportional factor. Note that in Eq. (80),
the small delay approximation has been used [51]. It is
well known that the proportionality factor f and delay
τ are given by [52]

f =
c

√
(ω2

s − ω2
p)2 + (|dBs|ωp)2

, (81)

and

τ =
θ

ωp
, θ = arctan

( |dBs|ωp

ω2
s − ω2

p

)
, (82)

with w2
s = |dAs|. Moreover, the parameter wp occurring

in Eqs. (81) and (82) corresponds to the angular driver
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frequency, that is, the angular frequency of the vari-
able p assuming the sinusoidal approximation holds. In
this case, w2

p = |dAp|. The variable s can be considered

as fast variable (relative to p) if lR{|λ(s)
1,2|} 
 lR{λ

(p)
1,2}

and ωs 
 ωp (i.e., |dAs| 
 |dAp|) holds. In particu-
lar, lR{|λ(s)

1,2|} 
 lR{λ
(p)
1,2} implies that sh vanishes rel-

atively quickly, while ωs 
 ωp implies that θ, τ ≈ 0
(see Eq. (82)). Similar to the adiabatic elimination tech-
nique and other techniques used to study fast variables
in other contexts [1,13,53,54], based on the previous
considerations, an approximative amplitude equation
model can be constructed. Let sa and pa denote the
approximations of s and a, respectively (i.e., s ≈ sa
and p ≈ pa). Then, sa is obtained by a mapping from
pa and dpa/dt like (see Eq. (80))

sa(t) = f

(
pa(t) − τ

d
dt

pa(t)
)

, (83)

and pa satisfies the closed evolution equation (see Eq.
(78) with s replaced by sa)

d2

dt2
pa = dAp pa + dBp

d
dt

pa

−a

[
f

(
pa − τ

d
dt

pa

)]2 d
dt

pa. (84)

Equation (84) provides an approximative evolution
equation for the amplitude dynamics of the oscillator
model. Let us turn next to an approximative description
of the orientation of the limit cycle. As mentioned at
the beginning of this section, the theory of pattern for-
mation states that an emerging state given in terms of
a superposition of eigenvectors may be composed both
of stable and unstable eigenvectors, where the unsta-
ble ones typically make the major contributions [1,13].
Consequently, when s does not vanish, then on the limit
cycle, the state X as defined by Eq. (23) will not be
specified entirely by vp (i.e., Eq. (24) will not hold).
If τ is sufficiently small and p(t) evolves relatively slow
(as assumed), such that τ |dp/dt| in a first-order approx-
imation can be neglected versus p, then from Eq. (80),
we obtain s(t) ≈ fp(t). Substituting this approximation
into Eq. (23), we obtain

X(t) = s(t)vs + p(t)vp ≈ p(t) [fvs + vp] . (85)

That is, after an initial period Ti during which sh
becomes negligibly small, the 2D state vector X sat-
isfies

X(t) ≈ p(t)veff, (86)

where veff = fvs + vp denotes an effective vector that
specifies the approximative orientation of the limit cycle
in the x–u state space.

Let us illustrate these considerations by a numeri-
cal simulation. Just as in Sect. 3, we considered the

state variables as dimensionless quantities. We solved
numerically the coupled oscillator model (79) for dAs =
−4/s2, dAp = −0.4/s2, dBs = −0.5/s, dBp = 0.1/s,
c = 1/s2 and a = 1/s. We used an orthogonal basis
(33) with θ = 30◦. Consequently, the model exhib-
ited the eigenvalues λ

(s)
1,2 = −0.25 ± i1.984 per sec-

ond and λ
(p)
1,2 = 0.05 ± i0.630 per second with lR{λ

(s)
1,2}

five times larger in the amount than lR{λ
(p)
1,2}. More-

over, ωs = 2/s and ωp = 0.633/s, such that ωs was
three times larger than ωp. Note that from ωp, it fol-
lows that the oscillator system had a characteristic
period of Tp = 2π/ωp = 9.93 ≈ 10s. The matrices A
and B were computed as in Sect. 3. The initial con-
ditions x(0) = 0.1, dx(0)/dt = 0, u(0) = −0.15, and
du(0)/dt = 0 were used. The numerical simulation was
conducted by means of an Euler forward scheme with
fixed time step of 0.001s.

Figures 12, 13, 14 and 15 present the simulation
results. Figure 12 shows x(t) and u(t) for the initial
period of 80s (panel (a)) and for the ”late” period from
80 to 100s (panel (b)). In the ”late” period, the sys-
tem dynamics evolved approximately on the limit cycle.
Figures 13 and 14 demonstrate the use and goodness of
the approximation via Eqs. (83) and (84). Figure 13
shows the solutions s(t) and p(t) as computed from the
state variables x and u via s(x(t), u(t)) = vsX(t) and
p(x(t), u(t)) = vpX(t), respectively. These solutions are
considered as the exact solutions and are presented both
in panels (a) and (b). Panel (a) of Fig. 13 shows the
solutions s(t) and p(t) of the exact amplitude equations
(77) and (78) (that we solved numerically) as well. As
expected, the solutions were identical to those obtained
from the state variables. In contrast, panel (b) of Fig.
13 shows the solutions sa and pa of the approximative
amplitude equations (83) and (84) (that were solved
again numerically). We found that the functions sa(t)
and pa(t) were a good fit to s(t) and p(t) but deviated
slightly from the exact solutions. Figure 13 shows these
results for the initial period of 80s. Figure 14 present the
same analysis results for the ”late” period that reflects
the evolution on the limit cycle. In particular, panel
(b) reveals that sa and pa deviated slightly from the
exact solutions at the extreme values that can be seen
at t = 85s, t = 90s, and t = 95s. Figure 15 shows the
system’s dynamics as phase curves in the 2D x–u space
(panel (a)) and the 3D space given by x, u and dx/dt
(panel (b)). The entire 120s dynamics is shown in both
panels. Panel (a) presents the axes defined by vs, vp,
and veff . The axis vs forms a θ = 30◦ angle with the
horizontal axis (i.e., the x axis). As such vs and vp

are orthogonal to each other. However, this property
cannot be seen in panel (a), because the x and u axes
do not show the same ranges. As can be seen in panel
(a), the limit cycle dynamics did not evolve along vp

as in the previous examples presented in Sects. 2 to
4. In contrast, the dynamics evolved close to the axis
defined by veff . Panel (a) demonstrates that veff is
a good approximative quantity to characterize the ori-
entation of the limit cycle dynamics in the x–u space.

123



Eur. Phys. J. B (2022) 95 :156 Page 17 of 23 156

Fig. 12 State dynamics of the coupled oscillator model defined by Eq. (79). Panels a and b show x(t) (solid line) and u(t)
(dotted line) for the initial period of 80s (panel a) and the ”late” period of 80 to 100s (panel b). The figure demonstrates
that the model (79) that involves a slow (p) and a fast (s) variable indeed settles down into a limit cycle dynamics. For
parameters and initial conditions, see text

Fig. 13 Amplitude dynamics of the coupled oscillator model (79). Panel a: s(x, u) and p(x, u) computed from Eq. (79)
are shown as thick black lines and s(t) and p(t) computed from Eq. (77) and (78) are presented as thin gray lines. Since the
solutions were identical the thin gray lines can be seen on top of the thick black lines. Panel b: s(x, u) and p(x, u) computed
from Eq. (79) (as in panel a) are shown again as thick black lines. sa(t) and pa(t) computed from Eq. (83) and (84) are
presented as thin gray lines. The gray lines deviated slightly from the black lines, which can be seen more systematically in
Fig. 14. The figure demonstrates that the closed approximative evolution equation (84) for the unstable amplitude yields
a good approximation to the exact solution. Panels a and b: all solutions are shown for the initial period of 80s

Fig. 14 As in Fig. 13 but for the ”late” period from 80 to 100s

Panel (b) shows veff , as well. The limit cycle dynamics
evolved close to a plane defined by the vector axis veff ,
demonstrating again that veff is a useful characteristic
measure.

5.2 Multifrequency synchronized oscillations on tori

The approach can also be applied to study limit cycles
that involve two commensurable frequencies (i.e., fre-
quencies whose ratio can expressed as a rational num-
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Fig. 15 Phase curves, eigenvectors, and effective vector of the coupled oscillator model (79). Panel b: Simulated phase
curve u(x) (solid black line), eigenvector axes vs and vp (gray dotted lines), and axis veff (gray dashed line) are shown in
the x–u space. Panel b: The solution of Eq. (79) is plotted in the 3D space given by x, u and dx/dt as phase curve (solid
black line). The axis defined by veff is shown as well (gray dashed line). The figure demonstrates that the orientation of
the limit cycle can approximately be described by means of the effective vector veff and, in doing so, illustrates graphically
Eq. (86)

Fig. 16 State space (panel a) and amplitude space (panel b) solutions of the Holt 1:2 multifrequency oscillator model
based on Eq. (88). Panel a: state dynamics in terms of x, u, w (from top to bottom). Panel b: amplitude dynamics in terms
of s(t) (top), p1(t) (solid line bottom), and p2(t) (dotted line bottom). The figure illustrates that the dominant dynamics
takes place in the 2D space spanned by the unstable amplitudes p1 and p2. See text for details

Fig. 17 Phase curves, eigenvectors, and limit cycle attractor of the Holt 1:2 multifrequency model. Panel a: The simulated
phase curve u(x) (solid black line) and the eigenvector axes and v1 (gray dotted lines) are shown in the x–u space. Panel b:
The solution X(t) is plotted in the 3D x–u–w space as phase curve (solid black line). Only the final 5s of the simulation are
shown. The axes of v1 and v2 (gray dotted lines) and vs (black dashed line) are depicted as well. The figure demonstrates
that the 1:2 limit cycle is located in the 2D space spanned by the axes of the unstable eigenvectors v1 and v2 and, in doing
so, illustrates Eq. (95)
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ber like n : m). Limit cycles of this kind may form
closed orbits on tori. Let us consider three coupled
second-order systems that involve the 3D state vector
X = (x, u, w) and evolve like

d2

dt2
x = fx,

d2

dt2
u = fu,

d2

dt2
w = fw, (87)

where the right-hand side functions (in analogy to Eq.
(17)) in general depend on x, u, w and the correspond-
ing first-order derivatives. Let us assume the origin
x = u = w = 0, dx/dt = 0, du/dt = 0, dw/dt = 0
is a fixed point. The model parameters are assumed
to depend on a bifurcation parameter, such that at a
certain critical value, the fixed point becomes unstable
and a Hopf bifurcation takes place. With respect to the
fixed point, the evolution equation (87) can (in analogy
to Eq. (25)) be cast into the form

d2

dt2
X = AX

+B
d
dt

X + R(x, u, w,dx/dt,du/dt,dw/dt),

(88)

where A, B are 3 × 3 matrices. Our approach applies
when A and B are simultaneously diagonalizable matri-
ces. In this case, they exhibit the same three eigenvec-
tors that will be denoted by vs, v1, and v2. Moreover,
the matrices A, B can be expressed like

A = MDAM−1, B = MDBM−1, (89)

with the help of the diagonal matrices

DA =

(
dAs 0 0
0 dA1 0
0 0 dA2

)

, DB =

(
dBs 0 0
0 dB1 0
0 0 dB2

)

,

(90)

and the diagonalization matrix

M = (vs v1 v2 ) , (91)

(see also Eqs. (19) and (20). Since M−1 (by assumption)
exists, the eigenvectors are linearly independent and the
state vector as function of time can be expressed in the
eigenvector basis like

X(t) = s(t)vs + p1(t)v1 + p2(t)v2, (92)

where s, p1, p2 will be referred to as amplitudes again.
Let us express the remainder vector like

R = vsrs + v1r1 + v2r2, (93)

then (in analogy to the considerations worked out in
Sec. 3) from Eq. (88), it follows that

d2

dt2
s = dAs s + dBs

d
dt

s + rs,

d2

dt2
p1 = dA1 p1 + dB1

d
dt

p1 + r1,

d2

dt2
p2 = dA2 p2 + dB2

d
dt

p2 + r2. (94)

In summary, in the case of interest the original model
(87) can be transformed into Eq. (94). The approach
is most powerful if at the Hopf bifurcation point the
dynamics of s is characterized by two eigenvalues with
negative real parts and rs is such that s converges to
zero. In contrast, the p1 and p2 dynamics is assumed to
exhibit eigenvalues with positive real parts.

In the context of the modeling of a n : m multifre-
quency limit cycle, it then follows that the coupled sys-
tem p1, p2 entirely describes the dynamics on the limit
cycle. In this scenario, the system at hand exhibits one
stable eigenvector vs and two unstable eigenvectors v1

and v2 and the dynamics on the attractor is given by

lim
t→∞X(t) = p1(t)v1 + p2(t)v2. (95)

The reduced amplitude space is two dimensional.
In the application that will be shown next, for sake

of simplicity, it will be assumed that vs, v1, and v2

constitute an orthogonal basis. For systems for which
this is not the case, a bi-orthogonal basis as described
in Sect. 3 can be used.

A class of relative simple multifrequency models,
so-called canonical-dissipative (CD) coupled multifre-
quency oscillators, has been recently introduced [55,56].
CD models exhibit the advantage that they can be
treated to a large extent analytically and include a vari-
ety of special cases that have been previously discussed
in the literature (for details, see Refs. [55,56] again). To
illustrate by a numerical example the general ideas lead-
ing from Eq. (88) to Eq. (95), we used for r1 and r2 the
Holt model of the CD framework, which is a 1:2 mul-
tifrequency limit cycle oscillator. In addition, we put
rs = 0. The somewhat lengthy equations can be found
in the appendix 7.3. Here, we restrict ourselves to dis-
cuss the simulation results that are presented in Figs. 16
and 17. We solved the coupled oscillator model defined
by Eqs. (88) and (93) (using an Euler forward scheme
with time step 0.001s) for the functions r1 and r2 and
parameters listed in the appendix. For those parame-
ters, we had lR{λ

(s)
1,2} < 0, lR{λ

(p1)
1,2 } > 0, lR{λ

(p2)
1,2 } > 0.

The variables x, u, w were assumed to be dimensionless
quantities.

Panel (a) of Fig. 16 shows the state variables x, u,
w as functions of time. We found that after a tran-
sient period, the variables settled down in an oscillatory
rhythm that involved two frequencies with a 1 : 2 ratio
(as expected). Panel (b) of Fig. 16 shows the ampli-
tudes s, p1, and p2 as functions of time. As expected,
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s decayed to zero. In contrast, p1 and p2 converged to
a stable multifrequency limit cycle, where p2 oscillated
with twice of the frequency of p1. Figure 17 shows the
dynamics in the 2D x–u state space (panel (a)) and the
3D x–u–w state space (panel (b)) and illustrates the
role of the eigenvectors. Panel (a) show the phase curve
u(x) and the direction specified by vs. The direction
specified by v1 is also shown in the x–u space and (for
the set of eigenvectors used in our simulation) happened
to be identical to the direction specified by v2 in the
x–u subspace (v1 and v2 only differed with respect to
their w-components). As expected, it was found that
the dynamics converged towards the direction specified
by the unstable vectors v1 and v2. Panel (b) shows
the phase curve of X in the 3D space together with
the directions specified by all three eigenvectors. Note
that the direction related to the stable eigenvector vs

(dashed black line) is perpendicular to the 2D plane
specified by the directions of the unstable eigenvectors
v1 and v2 (dotted gray lines). In panel (b), only the
final 5 s of the dynamics are shown that are assumed
to take place approximately on the limit cycle. It was
found that the limit cycle (that forms some kind of U or
parabola) lies in that 2D plane spanned by the unstable
directions. Finally, note that in the 6D space spanned
by x, u, w and the corresponding time derivative vari-
ables the limit cycle would form a closed orbit that lies
on a torus.

6 Discussion

Unstable eigenvectors and their amplitudes have been
proven to be key analysis tools for a variety of studies
on nonlinear systems ranging from studies in physics,
chemistry, and biology [1,2,4,10,11,54,57–59] to stud-
ies of human reactions [13] and research on COVID-19
[18–20]. In the current study, a new application of the
concept of unstable eigenvectors and amplitudes was
presented for coupled oscillators with simultaneously
diagonalizable matrices. In this context, a general class
of coupled oscillators was presented with stable limit
cycles that are aligned along unstable eigenvectors and
whose dynamics on those limit cycles is determined by
reduced (one-variable) amplitude descriptions. Three
worked-out applications in the field of electric circuits,
neuroscience, and cell biology were presented as well.

Coupled oscillatory units such as the Elwakil–Salama
circuit (see Sect. 2) have frequently been studied with
the help of numerical simulations [28,29,60] or by deriv-
ing equations for the phase dynamics and discussing
phase stability (e.g., Ref. [61,62]); see also the intro-
duction. In contrast, the proposed eigenvector analysis
presented in the current study offers an elegant analyt-
ical approach on a level that is ”closer” to the origi-
nal state space description as compared to the phase
dynamics description. In particular, a key benefit of
the approach is the one-to-one mapping between the
original state space and the amplitude space; see Eq.
(13). Features of the original model may be studied in

two amplitude sub-spaces that are completely decou-
pled as in the case of the Elwakil–Salama circuit (Sect.
2) or, alternatively, may be studied with the help of an
approximative single-variable description (Sect. 5.1). In
general, the amplitude space description may allow for
analysis steps that are not readily available on the level
of the original state variables. Therefore, the amplitude
space description increases the repertoire of tools to
analyze electric circuits.

The dynamics of coupled Fitzhugh–Nagumo neu-
rons has frequently been studied by means of numer-
ical methods [31–35] and/or by studying the eigen-
value spectrum [30] and the phase dynamics level [34].
As mentioned in the introduction, these approaches
have produced useful insights into possible impacts
of neuronal couplings. In particular, in such studies,
more comprehensive models have been investigated
that exhibit additive terms in Eqs. (40) and (42) and/or
in Eqs. (41) and (43). For example, Shim and Hus-
bands [32] considered the asymmetric case for which
such additive parameters differ across the two coupled
neurons. While it is beyond the scope of the present
study to address such more sophisticated features of
the coupled Fitzhugh–Nagumo model, future studies
may take advantage of the approach presented in Sect.
4.1. In particular, in view of the worked-out example
presented in Sect. 4.1, it might be worthwhile to re-
examine the cases of the so-called groups C and F pre-
sented in the study by Shim and Husbands [32] that
seem to exhibit unstable eigenvector axes similar to the
ones discussed in Sect. 4.1.

Section 4.2 offers a novel approach to study two cou-
pled Goodwin oscillators. Previous research on coupled
Goodwin oscillators focused in particular on the cou-
pling of gene regulatory pathways across cells that are
putatively involved in establishing a molecular circa-
dian ”clock” (e.g., Refs. [36,49]). However, oscillatory
signaling pathways have been identified also in other
contexts. For example, there is evidence that embry-
onic development involves limit cycle oscillators on the
level of individual cells that cause the period growth
of somite segments of zebrafish and the period out-
growth of limbs in chicken [63,64]. Therefore, the anal-
ysis presented in Sec. 4.2 may be applied specifically to
study inter-cellular coupled pathways during embryonic
development.

The applications presented in Sects. 2 and 4 have
been limited to discuss oscillatory systems described
by second-order and third-order differential equations.
However, in general, and, in particular, in the con-
text of the Goodwin oscillator, fourth-order differen-
tial equations [36,49] and higher order differential equa-
tions [65] describing oscillatory units have been used in
the literature. Therefore, the current study may open
a new avenue to identify the underlying, essential low-
dimensional dynamics of such high-dimensional oscilla-
tory models.

Our study focused on limit cycle attractors. In Sect.
5.2, multifrequency m : n limit cycle attractors have
been addressed that involve two commensurable fre-
quencies. However, our approach may also be applied
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to address quasiperiodic oscillations on attractor tori or
even chaos. Here, quasiperiodic oscillations are under-
stood as oscillations that involve two incommensurable
frequencies (i.e., frequencies ω1 and ω2 whose ratio
ω1/ω2 corresponds to an irrational number). The phase
curve of such an oscillation does not form a closed orbit
but typically occupies the entire surface of an appropri-
ately defined torus. While in Sect. 5.2 and the appendix
7.3, the basic CD framework developed in Ref. [55] for
the example of a 1:2 polyrhythm has been presented,
a more sophisticated and more flexible CD framework
has been presented in Ref. [56]. A close inspection of
Ref. [56] reveals that this latter framework may be
used to demonstrate (just as in Sect. 5.2) the possi-
bility to address quasiperiodic attractors (in the sense
defined above), which is, however, beyond the scope of
the current work. Similarly, the dynamics of chaotic sys-
tems that involve simultaneously diagonalizable matri-
ces may be analyzed using the approach presented in
Sects. 2 to 5. To be clear, as discussed at the end of Sect.
3, the approach suggested in the current study does not
apply to all kind of chaotic systems. The requirement
that the systems of interest exhibit simultaneously diag-
onalizable matrices imposes certain constraints. How-
ever, if (limit cycle, quasiperiodic, or chaotic) systems
satisfy those constraints, then the suggested approach
can reduce the dimensionality of the problem at hand
and help to identify the subspace in which the relevant
dynamics takes place. In doing so, new insights might
be obtained. In addition, such systems may be used as
testbed systems to clarify theoretical concepts or check
the performance of numerical methods.

The current theoretical study may also motivate
experimental research to test the key predictions that
should hold not only for the models that have been
discussed in Sects. 2 to 5 but also for similar models
that have not been explicitly addressed. In particular,
coupled electric units as in Ref. [29] may be examined
with respect to their transient dynamics to study the
approach towards the relevant unstable direction and
with respect to their limit cycle dynamics to fit the
dynamics to a single-variable model of an appropriately
defined unstable amplitude.
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7 Appendix

7.1 Diagonalization

Using M (see Eq. (20)), the new variables s and p consti-
tuting the vector Y = (s, p) can be defined and the x–u and
s–p spaces can be mapped to each other like

X = MY ⇔ Y = M−1X. (96)

Using those mappings, from Eq. (18), it follows that:

M−1LHS =
d2

dt2
M−1X =

d2

dt2
Y

M−1RHS = M−1AX + M−1B
d

dt
X

= M−1AMY + M−1BM
d

dt
Y

= DAY + DB
d

dt
Y

⇒ d2

dt2
Y = DAY + DB

d

dt
Y, (97)

which yields (21) as reported in Sect. 3.

7.2 Bi-orthogonal vectors

The bi-orthogonal vectors ws and wp are defined by wjvk =
δjk [1,18,41], where δjk is the Kronecker symbol. Explicitly
ws and wp correspond to the row vectors of M−1 [18,19].
By definition of wp, from Eq. (23), we obtain

p(t) = wpX(t),
d

dt
p(t) = wp

d

dt
X(t). (98)

Consequently, Eq. (28) can be cast into the form

d2

dt2
X = AX + B

d

dt
X

−vp

[
a(wpX)2wp

d

dt
X + b

(
wp

d

dt
X

)3
]

.

(99)

7.3 Holt 1:2 oscillator

The Holt 1:2 multifrequency oscillator within the CD frame-
work is presented in Ref. [55]. Using the variables p1 and p2

as in Sect. 5.2, the oscillator equations read

d2

dt2
p1 = −Kp1 − γ1

d

dt
p1 (H1 − B1)

−γ3

(
4Kp1p2 + 2

d

dt
p1

d

dt
p2

)
(I3 − B3),

d2

dt2
p2 = −4Kp2 − γ2

d

dt
p2 (H2 − B2)

−γ3

(
[
d

dt
p1]

2 − Kp2
1

)
(I3 − B3). (100)

The model involves the three pseudo-invariant functions

H1 =
1

2

(
[
d

dt
p1]

2 + Kp2
1

)
,
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H2 =
1

2
[
d

dt
p2]

2 + 2Kp2
2,

I3 =
d

dt
p1

[
3Kp1p2 +

d

dt
p1

d

dt
p2

]
− Kp1L0, (101)

where L0 denotes the angular momentum: L0 = p1
d
dt

p2 −
p2

d
dt

p1. The model parameters are: K, γ1, γ2, γ3, B1, B2, B3.

All parameters are positive except for B3, which can assume
positive or negative numbers or equals zero. Comparing Eq.
(100) with Eq. (94) allowed us to implement the 1:2 Holt
model for the simulation presented in Sec. 5.2. Explicitly,
we used

dA1 = −K, dA2 = −4K, dB1 = γ1B1, dB2 = γ2B2,

(102)

and

r1 = −γ1
d

dt
p1H1

−γ3

(
4Kp1p2 + 2

d

dt
p1

d

dt
p2

)
(I3 − B3),

r2 = −γ2
d

dt
p2H2

−γ3

(
[
d

dt
p1]

2 − Kp2
1

)
(I3 − B3). (103)

As mentioned in Sect. 5.2, for the simulation, we also used
rs = 0. The variables p1 and p2 occurring in Eq. (103) and
in Fig. 16 and the variable s presented in Fig. 16 were com-
puted from

s(t) = vsX(t), p1(t) = v1X(t), p2(t) = v2X(t). (104)

As diagonalization matrix M , we used the 3D rotation
matrix. For demonstration purposes, it was sufficient to use
a matrix with two angles φ and θ (rather than the general
case involving three angles). Explicitly, we used

M =

⎛
⎝ cos(φ) − sin(φ) cos(θ) sin(φ) sin(θ)

sin(φ) cos(φ) cos(θ) − cos(φ) sin(θ)
0 sin(θ) cos(θ)

⎞
⎠ . (105)

The columns of M defined vs, v1, and v2, see Eq. (91).
In total, the model simulated in Sec. 5.2 was defined by
Eqs. (88), (89), (90), (91), (93) and Eqs. (101)–(105). The
following model parameters were used: dAs = −1/s2, dBs =
−0.5/s, K = ω2

0 , ω0 = 2πf , f = 0.5 Hz, γ1 = γ2 = 0.5s,
γ3 = 0.01s3, B1 = B2 = 1/s2, B3 = 0, φ = 100◦, and
θ = 45◦.
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