Skip to main content
Log in

Bose–Einstein condensation in one-dimensional systems with short-range correlated disordered on-site potentials

  • Regular Article – Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study Bose–Einstein condensation (BEC) in one-dimensional tight-binding systems with two kinds of short-range correlated disordered on-site energy sequences (OSESs). One is the chaotic sequence generated by the modified Bernoulli map, the other is the random-dimer sequence. For these two kinds of short-range correlated systems, we consider binary and non-binary versions of sequences. It is found that BEC can occur in these systems at finite temperature and their transition temperatures (\(T_{C}s\)) increase with the potential strength w. Moreover, the \(T_{C}s\) of the systems with non-binary OSESs are greater than those of the binary ones. And the \(T_{C}\) increases with the correlation parameter B (\(0<B\le 1\)) for the chaotic system. Compared with the uncorrelated disordered system, the introduction of correlation decreases the \(T_{C}\) for the chaotic binary system, while for the non-binary system that increases the \(T_{C}\) in the \(0.6<B\le 1\) region and decreases it in the remaining short-range correlated regions. The results for the random-dimer system are similar to those for the chaotic system in the \(0.6<B\le 1\) region.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. F. Dalfovo, S. Giorgini, L.P. Pitaevskii et al., Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

  2. M.H. Anderson, J.R. Ensher, M.R. Matthews et al., Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  3. K.B. Davis, M.O. Mewes, M.R. Andrews et al., Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  4. C.C. Bradley, C.A. Sackett, J.J. Tollett et al., Phys. Rev. Lett. 75, 1687 (1995)

    Article  ADS  Google Scholar 

  5. M.B. Soares, F. Kokubun, J.J. Rodríguez-Núñez et al., Phys. Rev. B 65, 174506 (2002)

    Article  ADS  Google Scholar 

  6. A. Smerzi, A. Trombettoni, P.G. Kevrekidis et al., Phys. Rev. Lett. 89, 170402 (2002)

    Article  ADS  Google Scholar 

  7. N.B. Jørgensen, L. Wacker, K.T. Skalmstang et al., Phys. Rev. Lett. 117, 055302 (2016)

    Article  ADS  Google Scholar 

  8. L.V. Butov, C.W. Lai, A.L. Ivanov et al., Nature 417, 47 (2002)

    Article  ADS  Google Scholar 

  9. S.O. Demokritov, V.E. Demidov, O. Dzyapko et al., Nature 443, 430 (2006)

    Article  ADS  Google Scholar 

  10. J. Kasprzak, M. Richard, S. Kundermann et al., Nature 443, 409 (2006)

    Article  ADS  Google Scholar 

  11. T. Giamarchi, C. Rüegg, O. Tchernyshyov, Nat. Phys. 4, 198 (2008)

    Article  Google Scholar 

  12. J.D. Plumhof, T. Stöferle, L. Mai et al., Nat. Mater. 13, 247 (2014)

    Article  ADS  Google Scholar 

  13. M.F. Riedel, P. Böhi, Y. Li et al., Nature 464, 1170 (2010)

    Article  ADS  Google Scholar 

  14. L. Pezzè, A. Smerzi, M.K. Oberthaler et al., Rev. Mod. Phys. 90, 035005 (2018)

    Article  ADS  Google Scholar 

  15. E. Moreno-Pineda, C. Godfrin, F. Balestro et al., Chem. Soc. Rev. 47, 501 (2018)

    Article  Google Scholar 

  16. P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  17. Y. Imry, S.k Ma, Phys. Rev. Lett 35, 1399 (1975)

  18. A. Aharony, Y. Imry, S.k Ma, Phys. Rev. Lett. 37, 1364 (1976)

  19. M. Aizenman, J. Wehr, Phys. Rev. Lett. 62, 2503 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  20. P. Lugan, D. Clément, P. Bouyer et al., Phys. Rev. Lett. 98, 170403 (2007)

    Article  ADS  Google Scholar 

  21. T. Paul, P. Schlagheck, P. Leboeuf et al., Phys. Rev. Lett. 98, 210602 (2007)

    Article  ADS  Google Scholar 

  22. C.H. Hsueh, R. Ong, J.F. Tseng et al., Phys. Rev. A 98, 063613 (2018)

    Article  ADS  Google Scholar 

  23. D. Boiron, C. Mennerat-Robilliard, J.M. Fournier et al., Europ. Phys. J. D 7, 373 (1999)

    Article  ADS  Google Scholar 

  24. J.E. Lye, L. Fallani, M. Modugno et al., Phys. Rev. Lett. 95, 070401 (2005)

    Article  ADS  Google Scholar 

  25. D. Clément, A.F. Varón, J.A. Retter et al., New J. Phys. 8, 165 (2006)

    Article  ADS  Google Scholar 

  26. L. Fallani, J.E. Lye, V. Guarrera et al., Phys. Rev. Lett. 98, 130404 (2007)

    Article  ADS  Google Scholar 

  27. U. Gavish, Y. Castin, Phys. Rev. Lett. 95, 020401 (2005)

    Article  ADS  Google Scholar 

  28. P. Massignan, Y. Castin, Phys. Rev. A 74, 013616 (2006)

    Article  ADS  Google Scholar 

  29. H. Gimperlein, S. Wessel, J. Schmiedmayer et al., Phys. Rev. Lett. 95, 170401 (2005)

    Article  ADS  Google Scholar 

  30. D.W. Wang, M.D. Lukin, E. Demler, Phys. Rev. Lett. 92, 076802 (2004)

    Article  ADS  Google Scholar 

  31. J.M. Luttinger, H.K. Sy, Phys. Rev. A 7, 712 (1973)

    Article  ADS  Google Scholar 

  32. R. Burioni, D. Cassi, I. Meccoli et al., Europhys. Lett. 52, 251 (2000)

    Article  ADS  Google Scholar 

  33. R. Burioni, D. Cassi, A. Vezzani, J. Phys. A: Math. Gen. 35, 1245 (2002)

    Article  ADS  Google Scholar 

  34. O. Lenoble, L.A. Pastur, V.A. Zagrebnov, C R Phys. 5, 129 (2004)

    Article  ADS  Google Scholar 

  35. I.N. de Oliveira, F.A.B.F. de Moura, M.L. Lyra et al., Phys. Rev. E 81, 030104 (2010)

    Article  Google Scholar 

  36. E.J.G.G. Vidal, R.P.A. Lima, M.L. Lyra, Phys. Rev. E 83, 061137 (2011)

    Article  ADS  Google Scholar 

  37. M.L. Lyra, F.A.B.F. de Moura, I.N. de Oliveira et al., Phys. Rev. E 89, 052133 (2014)

    Article  ADS  Google Scholar 

  38. P. Xie, B. Wu, Z. Zhang, Europhys. Lett. 116, 38002 (2016)

    Article  ADS  Google Scholar 

  39. I.N. de Oliveira, F.A.B.F. de Moura, R.A. Caetano et al., Phys. Rev. B 82, 172201 (2010)

    Article  ADS  Google Scholar 

  40. D.H. Dunlap, H.L. Wu, P.W. Phillips, Phys. Rev. Lett. 65, 88 (1990)

    Article  ADS  Google Scholar 

  41. D.F. Barros, A.E.B. Costa, F.A.B.F. de Moura, J. Phys.: Condens. Matter 23, 345404 (2011)

    Google Scholar 

  42. O. Farzadian, M. Niry, Phys. A 450, 95 (2016)

    Article  MathSciNet  Google Scholar 

  43. O. Farzadian, M. Niry, Phys. A 505, 49 (2018)

    Article  MathSciNet  Google Scholar 

  44. Y. Aizawa, C. Murakami, T. Kohyama, Prog. Theor. Phys. Suppl. 79, 96 (1984)

    Article  ADS  Google Scholar 

  45. H. Yamada, T. Okabe, Phys. Rev. E 63, 026203 (2001)

    Article  ADS  Google Scholar 

  46. H.S. Yamada, Chaos, Solitons. Fractals 109, 99 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Grant No. 11975126). We are grateful to Dr. Zhichao Zhou for his critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Wanwan Shi completes data simulations and analysis, and writes the first draft of the paper. Peiqing Tong guides the design, data analysis, thesis writing and revision of this research. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Peiqing Tong.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, W., Tong, P. Bose–Einstein condensation in one-dimensional systems with short-range correlated disordered on-site potentials. Eur. Phys. J. B 95, 137 (2022). https://doi.org/10.1140/epjb/s10051-022-00399-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00399-6

Navigation