Skip to main content
Log in

The comparable structural, elastic anisotropic and thermophysical properties of advanced U–Si fuel to baseline UO2: a DTF method

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Based on a few assumptions regarding crystal construction, the structural, elastic anisotropic and thermophysical properties of advanced U–Si system and baseline UO2 have been investigated through a first-principles density functional theory (DFT) method. The calculated lattice constants are in good agreement with the previous experimental and theoretical values. The elastic properties, including bulk modulus, shear modulus, Young’s modulus, Pugh’s B/G ratio, Poisson’s ratio and elastic anisotropy are derived from the elastic data \({C}_{ij}\). The calculation results show that the U3Si2 and β-U3Si materials are brittle, while single-crystal UO2 is ductile. Based on Poisson’s ratio, the advanced U–Si compounds and the baseline UO2 compound will have the different elastic deformations. Moreover, the U3Si2 and β-U3Si have elastic anisotropy behavior, while the UO2 with an elastic isotropic characteristic mainly. Finally, Debye temperature, melting point, Voight harness and the hoop stress are predicted through different empirical formulas. The hoop stress of UO2 is larger than that for U3Si2 and β-U3Si. There will be highlight implications of these calculated data for future U–Si fuel pellets’ design and preparation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: All data generated or analysed during this study are included in this published article.]

References

  1. T.L. Ulrich, S.C. Voger, D.A. Lopes, V. Kocevski, J.T. White, E.S. Sooby, T.M. Besmann, Phase stability of U5Si4, USi and U2Si3 in the uranium-silicon system. J. Nucl. Mater. 540, 152353 (2020)

    Article  Google Scholar 

  2. J.T. White, A.T. Nelson, J.T. Dunwoody, D.D. Byler, K.J. McClellan, Thermophysical properties of USi to 1673K. J. Nucl. Mater. 471, 129–135 (2016)

    Article  ADS  Google Scholar 

  3. J. Rosales, I.J. Rooyen, S. Meher, R. Hoggan, C. Parga, J. Harp, Effect of high Si content on U3Si2 fuel microstructure. JOM 70, 209–213 (2018)

    Article  Google Scholar 

  4. A. G. Samoilov, A. I. Kashtanov, and V. S. Volkov, Dipersion-Fuel nuclear reactor elements. Jerusalem: Israel program for scientific translations, 1965, Engl. Translation: Aladjem.

  5. B. R. T. Frost, Nuclear materials. Volumes 10A and 10B of materials science and technology—a comprehensive treatment, edited by R. W. Cahn, P. Huusen, and E. J. Kramer, Weinheim, VCH 1994, ISBN 3-527-26823-5 (Vol. 10A), ISBN 3-527-2936-5 (Vol.10B).

  6. J.T. White, A.T. Nelson, D.D. Byler, J.A. Valdez, K.J. McClellan, Thermophysical properties of U3Si to 1150K. J. Nucl. Mater. 452, 304–310 (2014)

    Article  ADS  Google Scholar 

  7. R.C. Birtcher, J.W. Richardson, M.H. Mueller, Amorphization of U3Si2 by ion or neutron irradiation. J. Nucl. Mater. 230, 158–163 (1996)

    Article  ADS  Google Scholar 

  8. F. Cappia, J.M. Harp, Postirradiation examinations of low burnup U3Si2 fuel for light water reactor applications. J. Nucl. Mater. 518, 62–79 (2019)

    Article  ADS  Google Scholar 

  9. T.K. Yao, B.W. Gong, L.F. He, J. Harp, M. Tonks, J. Lian, Radiation-induced grain subdivision and bubble formation in U3Si2 at LWR temperature. J. Nucl. Mater. 498, 169–175 (2018)

    Article  ADS  Google Scholar 

  10. A. E. Dwight, ANL-82-14, Argonne National Laboratory, Argonne, 1L, 1982.

  11. U. Carvajal-Nunez, T.A. Saleh, J.T. White, B. Maiorov, A.T. Nelson, Determination of elastic properties of polycrystalline U3Si2 using resonant ultrasound spectroscopy. J. Nucl. Mater. 498, 438–444 (2018)

    Article  ADS  Google Scholar 

  12. X.F. Guo, X.J. Lü, J.T. White, C.J. Benmore, A.T. Nelson, R.C. Roback, H.W. Xu, J. Nucl. Mater. 523, 135–142 (2019)

    Article  ADS  Google Scholar 

  13. A. Mohamad, Y. Ohishi, H. Muta, K. Kurosaki, S. Yamanaka, Thermal and mechanical properties of polycrystalline U3Si2 synthesized by spark plasma sintering. J. Nucl. Sci. Tech. 55, 1141–1150 (2018)

    Article  Google Scholar 

  14. G. Kimmel, B. Sharon, M. Rosen, Structure and phase stability of uranium-silicon U3Si at low temperatures. Acta. Cryst. B36, 2386–2389 (1980)

    Article  Google Scholar 

  15. I. Hastings, Burnup and temperature dependence of swelling in U3Si. J. Nucl. Mater. 41(2), 195–202 (1971)

    Article  ADS  Google Scholar 

  16. B. Bethune, Structural transformation in U3Si. J. Nucl. Mater. 31, 197–202 (1969)

    Article  ADS  Google Scholar 

  17. I. Hasting, R. Stoute, Temperature-dependent swelling in irradiated U3Si fuel elements. J. Nucl. Mater. 37, 295–302 (1970)

    Article  ADS  Google Scholar 

  18. S.C. Middleburgh, R.W. Grimes, E.J. Lahoda, C.R. Stanek, D.A. Andersson, Non-stoichiometry in U3Si2. J. Nucl. Mater. 482, 300–305 (2016)

    Article  ADS  Google Scholar 

  19. D. Laux, W. de Weerd, D. Papaioannou, S. Kitajima, V. Rondinella, G. Despaux, Scanning acoustic microscope for mechanical characerization and density estimation of irradiated nuclear fuel, Prog. Nucl. Energy 72(2014)63–66 symposium E-MRS 2013. Scientific basis of the nuclear fuel cycle.

  20. D. Laux, D. Baron, G. Despaux, A. Kellerbauer, M. Kinoshita, Determination of high burnup nuclear fuel elastic properties with acoustic microscopy. J. Nucl. Mater. 420, 94–100 (2012)

    Article  ADS  Google Scholar 

  21. K. Phani, D. Sanyal, A. Sengupta, Estimation of elastic properties of nuclear fuel material using longitudinal ultrasonic velocity a new approach. J. Nucl. Mater. 366, 129–136 (2007)

    Article  ADS  Google Scholar 

  22. D.A. Andersson, X.-Y. Liu, B. Beeler, S.C. Middleburgh, A. Claisse, C.R. Stanek, Density functional theory calculations of self- and Xe diffusion in U3Si2. J. Nucl. Mater. 515, 312–325 (2019)

    Article  ADS  Google Scholar 

  23. S.J. Zhao, Defect evolution mechanism in U3Si2 from molecular dynamics simulations. J. Nucl. Mater. 537, 152238 (2020)

    Article  Google Scholar 

  24. E. Jossou, Md.J. Rahman, D. Oladimeji, B. Beeler, B. Szpunar, J. Szpunar, Anisotropic thermophysical properties of U3Si2 fuel: an atomic scale study. J. Nucl. Mater. 521, 1–12 (2019)

    Article  ADS  Google Scholar 

  25. M.W.D. Cooper, K.A. Gamble, L. Capolungo, C. Matthews, D.A. Andersson, B. Beeler, C.R. Stanek, K. Metzger, Irradiation-enhanced diffusion and diffusion-limited creep in U3Si2. J. Nucl. Mater. 555, 153129 (2021)

    Article  Google Scholar 

  26. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993)

    Article  ADS  Google Scholar 

  27. G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 4251 (1994)

    Article  Google Scholar 

  28. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 1753–17979 (1994)

    Article  Google Scholar 

  29. J.Z.V.I. Anisimov, O.K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stroner I. Phys. Rev. B 44, 943 (1991)

    Article  ADS  Google Scholar 

  30. S.L. Dudarev, D.N. Manh, A.P. Sutton, Effect of Mott-Hubbard correlations on the electronic structure and structure stability of uranium dioxide. Philos. Mag. 75, 613 (1997)

    Article  ADS  Google Scholar 

  31. A. David Ragnar, Density Functional Theory Calculations of Defect and Fission Gas Properties in U-Si Fuels, 2016. Accessed 25 Jan 2019.

  32. M.J. Noordhoek, T.M. Besmann, D. Andersson, S.C. Middleburgh, A. Chernatynskiy, Phase equilibria in the U-Si system from first-principles calculations. J. Nucl. Mater. 479, 216–223 (2016)

    Article  ADS  Google Scholar 

  33. S.C. Middleburgh, A. Claisse, D.A. Andersson, R.W. Grimes, P. Olsson, S. Mašková, Solution of hydrogen in accident tolerant fuel candidate material: U3Si2. J. Nucl. Mater 501, 234–237 (2018)

    Article  ADS  Google Scholar 

  34. S.C. Middleburgh, P.A. Burr, D.J.M. King, L. Edwards, G.R. Lumpkin, R.W. Grimes, Structural stability and fission product behaviour in U3Si. J. Nucl. Mater. 466, 739–744 (2015)

    Article  ADS  Google Scholar 

  35. W.H. Zachariasen, Crystal chemical studies of the 5f-series of elements. I. New structure types. Acta Crystallogr. 1, 265–268 (1948)

    Article  Google Scholar 

  36. K. Remschnig, T. Le Bihan, H. Noël, P. Rogl, Structural chemistry and magnetic behavior of binary uranium silicides. J. Solid State Chem. 97, 391–399 (1992)

    Article  ADS  Google Scholar 

  37. E. Jossou, U. Eduok, N.Y. Dzade, B. Szpunar, J.A. Szpunar, Oxidation behavior of U3Si2: an experimental and first principles investigation. Phys. Chem. Chem. Phys. 20, 4708–4720 (2018)

    Article  Google Scholar 

  38. G. Kimmel, Atomic position in U3Si. Acta Crystallogr. B 31, 1351–1353 (1975)

    Article  Google Scholar 

  39. Y. Yang, B.T. Wang, P. Zhang, Electronic and mechanical properties of ordered (Pu, U) O2 compounds: a density functional theory +U study. J. Nucl. Mater. 433, 345–350 (2013)

    Article  ADS  Google Scholar 

  40. M. Idiri, T.L. Bihan, S. Heathman, Behavior of actinide dioxides under pressure: UO2 and ThO2. Phys. Rev. B. 70, 14113 (2004)

    Article  ADS  Google Scholar 

  41. Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 76, 054115 (2007)

    Article  ADS  Google Scholar 

  42. G. Grimvall, Thermophysical properties of materials (North-Holland, Amsterdam, 1999)

    Google Scholar 

  43. T. Wang, N. Qiu, X. Wen, Y. Tian, J. He, K. Luo, X. Zha, Y. Zhou, Q. Huang, J.J. Lang, S.Y. Du, First-principles investigations on the electronic structures of U3Si2. J. Nucl. Mater. 469, 194–199 (2016)

    Article  ADS  Google Scholar 

  44. M. Sanati, R.C. Albers, T. Lookman, A. Saxena, Elastic constants, phonon density of states, and thermal properties of UO2. Phys. Rev. B. 84, 014116 (2011)

    Article  ADS  Google Scholar 

  45. I.J. Fritz, Elastic properties of UO2 at high pressure. J. Appl. Phys. 47, 4353 (1976)

    Article  ADS  Google Scholar 

  46. W. Voigt, Lehrburch der Kristallphysik (Teubner, Leizig, 1928)

    Google Scholar 

  47. A. Reuss, Calculation of the yield stress of solid solutions based on the plasticity condition for single crystals. Z. Angew Math. Mech. 9, 49 (1929)

    Article  Google Scholar 

  48. R. Hill, The elastic behavior of a crystalline aggregate. Proc. Phys. Soc. A 65, 349 (1952)

    Article  ADS  Google Scholar 

  49. S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823–843 (1954)

    Article  Google Scholar 

  50. D. Chattaraj, C. Majumder, Structural, electronic, elastic, vibrational and thermodynamic properties of U3Si2: a comprehensive study using DFT. J. Alloys. Comp. 732, 160–166 (2018)

    Article  Google Scholar 

  51. B.J. Beeler, M. Baskes, D. Andersson, M.W.D. Cooper, Y.F. Zhang, A modified embedded-atom method interatomic potential for uranium-silicide. J. Nucl. Mater. 495, 267–276 (2017)

    Article  ADS  Google Scholar 

  52. J. H. Bradley, Foundation for an anisotropic model, Bachelor of Science, (2016).

  53. J.W. Yang, L. An, Elasticity, lattice dynamics and ideal strengths of USi3 and U3Si via first principles calculations. J. Nucl. Mater. 512, 407–416 (2018)

    Article  ADS  Google Scholar 

  54. R.K. Behera, C.S. Deo, H.X. Xu, Effect of the substitution of f-electron elements on the structure and elastic properties of UO2. J. Nucl. Mater. 433, 504–513 (2018)

    Article  ADS  Google Scholar 

  55. A. Mohaad, W. Silpawilawan, H. Muta, K. Kurosaki, Y. Ohishi, Thermal and mechanical properties of U3Si and USi3. Ann. Nucl. Energy 133, 186–193 (2019)

    Article  Google Scholar 

  56. P.R. Graves, Raman microprobe spectroscopy of uranium dioxide single crystals and ion implanted polycrystals. Appl. Spectr. 44, 1665 (1990)

    Article  ADS  Google Scholar 

  57. D. Frazer, P. Hosemann, Plasticity of UO2 studied and quantifies via elevated temperature micro compression testing. J. Nucl. Mater. 525, 140–144 (2019)

    Article  ADS  Google Scholar 

  58. P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiS2. J. Appl. Phys. 84, 4891–4904 (1998)

    Article  ADS  Google Scholar 

  59. V. Tvergaard, J.W. Hutchinson, Microcracking in ceramics induced by thermal expansion or elastic anisotropy. J. Am. Chem. Soc. 71, 157 (1988)

    Google Scholar 

  60. D. H. Chung, W. R. Buessem, Anisotropy in single-crystal refractory compounds, edited by F. W. Vahdiek and S. A. Mersol (Plenum Press, New York, 1968), Vol. 2, p. 217.

  61. W. Voigt, Lehrbuch der Kristallphysics (Teubner, Leipzig, 1928), p. 739

    Google Scholar 

  62. A. Reuss, Z. Angew, Math. Mech. 9, 49 (1929)

    Google Scholar 

  63. R.K. Behera, C.S. Deo, H.X. Xu, Effect of the substitution of f-electron elements on the structure and elastic properties of UO2. J. Nucl. Mater. 433, 504–513 (2013)

    Article  ADS  Google Scholar 

  64. S. Ranganathan, M. Ostoja-Starzewski, Universal elastic anisotropy index. Phys. Rev. Lett. 101, 055504 (2008)

    Article  ADS  Google Scholar 

  65. O.L. Anderson, A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids. 24, 909 (1963)

    Article  ADS  Google Scholar 

  66. A. Mohamad, W. Silpawilawan, H. Muta, K. Kurosaki, Y. Ohishi, Thermal and mechanical properties of U3Si and USi3. Ann. Nucl. Energy 133, 186–193 (2019)

    Article  Google Scholar 

  67. P. Zhang, B.T. Wang, X.G. Zhao, Ground-state properties and high-pressure behavior of plutonium dioxide: density functional theory calculations. Phys. Rev. B 82, 144110 (2010)

    Article  ADS  Google Scholar 

  68. M.E. Fine, L.D. Brown, H.L. Marcus, Elastic constants versus melting temperatures in metals. Scr. Metall. 18, 951–956 (1984)

    Article  Google Scholar 

  69. D. Varshney, S. Shriya, Pressure and temperature dependent elastic, mechanical and thermodynamical properties of nuclear fuel: UO2 and UN2. J. Nucl. Mater. 440, 344–365 (2013)

    Article  ADS  Google Scholar 

  70. H. Okamoto, Si-U Phase Diagram, ASM Alloy Phase Diagrams Center, P. Villars, Editor-in-chief, (1960).

  71. H. Okamoto and K. Cenzual, section editors: http://www1.asminternational.org/AsmEnterprise/APD. ASM International, Materials Park, OH, (2006).

  72. J.M. Harp, P.A. Lessing, R.E. Hoggan, Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation. J. Nucl. Mater. 466, 728–738 (2015)

    Article  ADS  Google Scholar 

  73. K.E. Metzger, T.W. Knight, E. Roberts, X.Y. Huang, Determination of mechanical behavior of U3Si2 nuclear fuel by microindentation method. Prog. Nucl. Energy 99, 147–154 (2017)

    Article  Google Scholar 

  74. K. Yamada, S. Yamanaka, T. Nakagawa, M. Uno, M. Katsura, Study of the thermodynamic properties of (U, Ce) O2. J. Nucl. Mater. 247, 289 (1997)

    Article  ADS  Google Scholar 

  75. K. Yamada, S. Yamanaka, M. Katsura, Mechanical properties of (U, Ce) O2. J. Alloys Compd. 697, 271–273 (1998)

    Google Scholar 

  76. F. Gao, J. He, E. Wu, S. Liu, D. Yu, D. Li, S. Zhang, Y. Tian, Hardness of covalent crystals. Phys. Rev. Lett. 91, 015502 (2003)

    Article  ADS  Google Scholar 

  77. A. Šimunek, J. Vackáṙ, Hardness of covalent and ionic crystals: first-principle calculations. Phys. Rev. Lett. 96, 085501 (2006)

    Article  ADS  Google Scholar 

  78. V.A. Mukhanov, O.O. Kurakevych, V.L. Solozhenko, The interrelation between hardness and compressibility of substances and their structure and thermodynamic properties. High Press. Res. 28, 531 (2008)

    Article  ADS  Google Scholar 

  79. K. Li, X. Wang, F. Zhang, D. Xue, Electronegativity identification of novel superhard materials. Phys. Rev. Lett. 100, 235504 (2008)

    Article  ADS  Google Scholar 

  80. M.M. Smedskjaer, J.C. Mauro, Y.Z. Yue, Prediction of glass hardness using temperature-dependent constraint theory. Phys. Rev. Lett. 105, 115503 (2010)

    Article  ADS  Google Scholar 

  81. X.-Q. Chen, H.-Y. Niu, D.-Z. Li, Y.-Y. Li, Intrinsic correlation between hardness and elasticity in polycrystalline materials and bulk metallic glasses. Intermetallics 19, 1275–1281 (2011)

    Article  Google Scholar 

  82. J. White, A. Nelson, J. Dunwoody, D. Byler, D. Safarik, K. McClellan, Thermo-physical properties of U3Si2 to 1773K. J. Nucl. Mater. 464, 275–280 (2015)

    Article  ADS  Google Scholar 

  83. J. White, A. Nelson, Thermal conductivity of UO2+x and U4O9. J. Nucl. Mater. 443, 342–350 (2013)

    Article  ADS  Google Scholar 

  84. T. Helfer, P. Garcia, J. M. Ricaud, D. Plancq, C. Struzik, F. Sidoroff, L. Bernard, Modelling the effect of oxide fuel fracturing on the mechanical behavior of fuel rods, Pellet-clad interaction in water reactor fuels, Seminar Proceedings Aix-en-Provence, France 9–11 March 2004.

  85. V. I. Arimescu, Fuel Swelling Importance in PCI Mechanistic Modelling, Seminar Proceedings, Aix-en-Provence, France, march, (2004).

  86. J. P. Piron, M. Pelletier, J. Pavageau, Hellium Behavior in Spent UO2 and MOX Fuels, Seminar Proceedings, Aix-en-Provence, France, September, (2000).

  87. C. Bernaudat, Mechanical behavior modeling of fractured nuclear fuel pellets. Nuc. Eng. Des. 156, 373–381 (1995)

    Article  Google Scholar 

  88. R. Gailac, P. Pullumbi, F. Coudert, ELATE: an open-source online application for analysis and visualization of elastic tensors. J. Phys. Condens. Matter 28, 275201 (2016)

    Article  Google Scholar 

  89. J. Yang, J.P. Long, L.J. Yang, D.M. Li, First-principles investigations of the physical properties of binary uranium silicide alloys. J. Nucl. Mater. 443, 195–199 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Supercomputing Center in Shenzhen, and the National Key Research and Development Program of China (Grant No. 2017YFB0702401).

Author information

Authors and Affiliations

Authors

Contributions

HG: conceptualization, methodology, software, validation, formal analysis, investigation, writing—original draft, writing—review and editing, visualization. HX: writing—review and editing. HW: writing—review and editing. FM: methodology, writing—review and editing. HH: writing—review and editing. QR: conceptualization, resources, writing—review and editing. YL: conceptualization, resources, writing—review and editing. GZ: conceptualization, resources, writing—review and editing.

Corresponding author

Correspondence to Hengfeng Gong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationship that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, H., Xiao, H., Wu, H. et al. The comparable structural, elastic anisotropic and thermophysical properties of advanced U–Si fuel to baseline UO2: a DTF method. Eur. Phys. J. B 95, 121 (2022). https://doi.org/10.1140/epjb/s10051-022-00345-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00345-6

Navigation