Skip to main content

Advertisement

Log in

The optimized of tunable all-inorganic metal halide perovskites CsNBr3 as promising renewable materials for future designing of photovoltaic solar cells technologies

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We report the study of chemical and physical characteristics of all-inorganic metal halide perovskites CsNBr3 (N2+  = Ge, Sn, Pb) via implementation of first-principles approaches in the framework of density functional theory (DFT) methodologies. Three different DFT approximations include Perdew–Burke–Ernzerhof (PBE), PBESOL, and Wu-Cohen (WC) within the generalized gradient approximation (GGA) based on the full-potential linearized augmented plane-wave (FPLAPW) scheme are used in unification with Kohn–Sham (KS) equation as executed in WIEN2k package. In addition, the hybrid functional (HSE06) was utilized to reproduce accurate energy-gaps (Egap) in the PBE-band-structures of CsNBr3 perovskites. It is found that the present results of GGA approaches for structural, electronic, and optical properties are consistent with the existing experimental and previous DFT data, where PBE gives values closer to experiments than others. Nonmagnetic and semiconducting properties, with reliable Egap localized at the R-symmetry point, are revealed by the three GGA results of band structures and density of states for all CsNBr3 perovskites. Moreover, the photonic energy-dependent optical properties of CsNBr3 perovskites comprising the real and imaginary parts of the dielectric function, conductivity, reflectivity, refractive index, and absorption and extinction coefficients have been realized using the GGA approaches. The semiconducting direct Egap (Egap = 0.9814–1.9086 eV) and high optical absorption implies that the three cesium bromide perovskites CsNBr3 can utilize in designing inorganic photovoltaic (PV) solar cells, photodetectors, photodiodes, and other PV devices working in ultraviolet–visible range.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Z. Shi, A.H. Jayatissa, Materials 11(5), 729 (2018)

    Article  ADS  Google Scholar 

  2. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovoltaics Res. Appl. 20(5), 606–614 (2012)

    Article  Google Scholar 

  3. J. Even, L. Pedesseau, E. Tea, S. Almosni, A. Rolland, C. Robert, J.-M. Jancu, C. Cornet, C. Katan, J.-F. Guillemoles, O. Durand, Int. J. Photoenergy 649408 (2014)

  4. F. Alrashed, M. Asif, Energy Proced. 18, 1096–1105 (2012)

    Article  Google Scholar 

  5. Y. Ye, X. Run, X. Hai-Tao, H. Feng, X. Fei, W. Lin-Jun, Chin. Phys. B 24(11), 116302 (2015)

  6. J.A. Luceño-Sánchez, A.M. Díez-Pascual, R.P. Capilla, Int. J. Mol. Sci. 20, 976 (2019)

    Article  Google Scholar 

  7. F. Deschler, D. Neher, L. Schmidt-Mende, APL Mater. 7, 080401 (2019)

  8. A. K. Chilvery, A. K. Batra, B. Yang, K. Xiao, P. Guggilla, M. D. Aggarwal, R. Surabhi, R. B. Lal, J. R. Currie, B. G. Penn, J. Photon. Energy 5, 057402 (2015)

  9. G. Lozano, J. Phys. Chem. Lett. 9, 3987–3997 (2018)

    Article  Google Scholar 

  10. M. Pazoki, T. Edvinsson, Sustainable Energy Fuels 2, 1430 (2018)

    Article  Google Scholar 

  11. S. Yun, Y. Qin, A.R. Uhl, N. Vlachopoulos, M. Yin, D. Li, X. Han, A. Hagfeldt, E. Environ, Sci. 11, 476 (2018)

    Google Scholar 

  12. B. Cai, X. Chen, M. Xie, S. Zhang, X. Liu, J. Yang, W. Zhou, S. Guo, H. Zeng, Mater. Horiz. 5, 961 (2018)

    Article  Google Scholar 

  13. N. Kumar, J. Rani, R. Kurchania, Mater. Today-Proc. 46(11), 5570–5574 (2021)

    Article  Google Scholar 

  14. V. Jella, S. Ippili, J.-H. Eom, S.V.N. Pammi, J.-S. Jung, V.-D. Tran, V.H. Nguyen, A. Kirakosyan, S. Yun, D. Kim, M.R. Sihn, J. Choi, Y.-J. Kim, H.-J. Kim, S.-G. Yoon, Nano Energy 57, 74–93 (2019)

    Article  Google Scholar 

  15. W. Xiang, W. Tress, Adv. Mater. 31(44), 1902851 (2019)

    Article  Google Scholar 

  16. Q. Zhang, Y. Yin, ACS Cent. Sci. 4(6), 668–679 (2018)

    Article  Google Scholar 

  17. D. Bharath Raja, K. Shanmuga Sundaram, R. Vidya, Solar Energy 207, (2020), 1348–1355

  18. L.M. Herz, ACS Energy Lett. 2(7), 1539–1548 (2017)

    Article  Google Scholar 

  19. T. Ibn-Mohammed, S.C.L. Koh, I.M. Reaney, A. Acquaye, G. Schileo, K.B. Mustapha, R. Greenough, Renew. Sust. Energy Rev. 80, 1321 (2017)

    Article  Google Scholar 

  20. A. Zhang, Y. Chen, J. Yan, IEEE J. Quant. Elect. 52 (6), (2016)

  21. P. Hohenberg, W. Kohn, Phys. Rev. 136(3B), 864–871 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  22. K.H. Schwarz, P. Blaha, G.K.H. Madsen, Comput. Phys. Commun. 147, 71–76 (2002)

    Article  ADS  Google Scholar 

  23. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, 1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  24. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  25. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008)

    Article  ADS  Google Scholar 

  26. Z. Wu, R.E. Cohen, Phys. Rev. B 73, 235116 (2006)

    Article  ADS  Google Scholar 

  27. L.C. Tang, J.Y. Huang, C.S. Chang, M.H. Lee, L.Q. Liu, J. Phys.: Condens. Matter 17, 7275–7286 (2005)

    ADS  Google Scholar 

  28. F. Tran, P. Blaha, Phys. Rev. B 83, 235118 (2011)

    Article  ADS  Google Scholar 

  29. H. Shi, M.H. Du, D.J. Singh, J. Alloy. Compd. 647, 906–910 (2015)

    Article  Google Scholar 

  30. M. A. Islam, Md. Zahidur Rahaman, Sapan Kumar Sen, AIP Adv. 11, (2021), 075109

  31. M. Houari, B. Bouadjemi, S. Haid, M. Matougui, T. Lantri, Z. Aziz, S. Bentata, B. Bouhafs, Indian J. Phys. 94(4), 455 (2020)

    Article  ADS  Google Scholar 

  32. U. Schwarz, H. Hillebrecht, M. Kaupp, K. Syassen, H.-G. von Schnering, G. Thiele, J. Solid State Chem. 118(1), 20–27 (1995)

    Article  ADS  Google Scholar 

  33. Wu-Jun Shi, Junwei Liu, Yong Xu, Shi-Jie Xiong, Jian Wu, Wenhui Duan, Phys. Rev. B 92, 205118 (2015)

  34. L. Peedikakkandya, P. Bhargava, RSC Adv. 6, 19857–19860 (2016)

    Article  ADS  Google Scholar 

  35. M. Roknuzzaman, K.K. Ostrikov, H. Wang, A. Du, T. Tesfamichael, Sci. Rep. 7, 14025 (2017)

    Article  ADS  Google Scholar 

  36. H.M. Ghaithan, Z.A. Alahmed, S.M.H. Qaid, M. Hezam, A.S. Aldwayyan, ACS Omega 5(13), 7468–7480 (2020)

    Article  Google Scholar 

  37. V.M. Goldschmidt, Die Gesetze der Krystallochemie. D. Naturwiss. 14, 477 (1926)

    Article  Google Scholar 

  38. R.D. Shannon, Acta Cryst. A 32, 751 (1976)

    Article  Google Scholar 

  39. S.G. Kang, J. Solid State Chem. 262, 251 (2018)

    Article  ADS  Google Scholar 

  40. S. Chen, T. Bimenyimana, M. Guli, Results Phys. 14, 102408 (2019)

  41. M. Boubchir, H. Aourag, Comput. Condens. Matter 24, e00495 (2020)

  42. S. Safari, S. M. S. Ahmadian, A. R. Ghadim, J. Photoch. Photobiol. A 394, 112461 (2020)

  43. W. Travis, E.N.K. Glover, H. Bronstein, D.O. Scanlon, R.G. Palgrave, Chem. Sci. 7, 4548 (2016)

    Article  Google Scholar 

  44. L. Zhou, J. Chang, Z. Lin, C. Zhang, D. Chen, J. Zhang, Y. Hao, RSC Adv. 7, 54586 (2017)

    Article  ADS  Google Scholar 

  45. Eduard Aleksanyan, Ani Aprahamian2, Alexander S. Mukasyan, Vachagan Harutyunyan, Khachatur V. Manukyan, J. Mater. Sci. 55, 8665–8678 (2020)

  46. Kangyu Ji, Miguel Anaya, Anna Abfalterer, Samuel D. Stranks, Adv. Optical Mater. 2002128 (2021)

  47. D. Menzel, A. Tejada, A. Al-Ashouri, I. Levine, J.A. Guerra, B. Rech, S. Albrecht, L. Korte, A.C.S. Appl, Mater. Interfaces 13(36), 43540–43553 (2021)

    Article  Google Scholar 

  48. W.J. Yin, J.H. Yang, J. Kang, Y. Yan, S.H. Wei, J. Mater. Chem. A 3, 8926 (2015)

    Article  Google Scholar 

  49. A.N. El-Shazly, M.Y. Rezk, K.M. Gameel, N.K. Allam, A.C.S. Appl, Nano Mater. 2(11), 7085–7094 (2019)

    Google Scholar 

  50. J. Hao, Y.-H. Kim, S. N. Habisreutinger, S. P. Harvey, E. M. Miller, S. M. Foradori, M. S. Arnold, Z. Song, Y. Yan, J. M. Luther, J. L. Blackburn, Sci. Adv. 7, eabf1959 (2021)

Download references

Acknowledgements

Researchers would like to thank Deanship of Scientific Research, Qassim University and Taibah University, for motivating to publish this paper.

Author information

Authors and Affiliations

Authors

Contributions

M.M.S. and A.A. conceived the project; M.M.S. implemented the PBE, PBESOL, and WC approaches to compute the structural, electronic, and optical structures, and performed all GGA computations. B.O.A. employed the HSE06 to compute the energy-gaps in band structures. A.A. and B.O.A. analyzed the obtained results and designed the figures and tables under the guidance of M.M.S. All authors contributed to the discussion and writing of the manuscript.

Corresponding author

Correspondence to Mohamed Musa Hasb-Elkhalig.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasb-Elkhalig, M.M., Almeshal, A. & Alsobhi, B.O. The optimized of tunable all-inorganic metal halide perovskites CsNBr3 as promising renewable materials for future designing of photovoltaic solar cells technologies. Eur. Phys. J. B 95, 70 (2022). https://doi.org/10.1140/epjb/s10051-022-00328-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00328-7

Navigation