Skip to main content

Advertisement

Log in

Two-stage noise-induced critical transitions in a fish population model with Allee effect in predators

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, we investigate a predator–prey fish population system and study the harvesting pressure in the presence of stochasticity. We explore the corresponding deterministic model, where the functional response is ratio-dependent and the Allee effect is added in the predator growth function. We find that the Allee effect in predator population increases the number of interior equilibrium points, and a maximum of six interior equilibrium points can be observed. In the deterministic case, we find some interesting dynamics like bi-stability, tri-stability and catastrophic bifurcations. We show that in the presence of noise, an increase in the prey species’ harvesting rate induces critical transitions, one is from higher fish density to lower density and another one is from predator’s stable state to predator’s extinction. We study a few generic early warning indicators namely, Lag-1 autocorrelation (AR(1)), variance, skewness, kurtosis to predict the occurrence of critical transitions. We also calculate conditional heteroskedasticity as an early warning indicator. Furthermore, we study the confidence domain method using the stochastic sensitivity function technique to find a threshold value of noise intensity for a critical transition. We also study the two-stage transition through confidence ellipses and observe that predator population can goes to extinction for any choice of initial conditions with high probability. Overall, our result shows that the stability of the prey–predator fish population depends upon the harvesting rate as well as environmental noises, and we can prevent the extinction of species by controlling them.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability statement

This manuscript has no associated data. [Author’s comment: This is a theoretical work and all the related data are contained in this article].

References

  1. A.J. Lotka, A Natural Population Norm i and ii (Washington Academy of Sciences, Harvard, 1913)

    Google Scholar 

  2. V. Volterra, Nature 118, 558–560 (1926)

    Article  ADS  Google Scholar 

  3. R. Arditi, L.R. Ginzburg, J. Theor. Biol. 139, 311–326 (1989)

    Article  ADS  Google Scholar 

  4. R. Arditi, L.R. Ginzburg, H.R. Akcakaya, Am. Nat. 138, 1287–1296 (1991)

    Article  Google Scholar 

  5. W.C. Allee, Animal Aggregations: A Study in General Sociology (University of Chicago Press, Chicago, 1931)

    Book  Google Scholar 

  6. M.H. Wang, M. Kot, Math. Biosci. 171, 83–97 (2001)

    Article  MathSciNet  Google Scholar 

  7. F. Courchamp, L. Berec, J. Gascoigne, Allee Effects in Ecology and Conservation (Oxford University Press, Oxford, 2008)

    Book  Google Scholar 

  8. E.D. Conway, J.A. Smoller, SIAM J. Appl. Math. 46, 630–642 (1986)

    Article  MathSciNet  Google Scholar 

  9. A. Morozov, S. Petrovskii, B.L. Li, J. Theor. Biol. 238, 18–35 (2006)

    Article  ADS  Google Scholar 

  10. J. Wang, J. Shi, J. Wei, J. Math. Biol. 62, 291–331 (2011)

    Article  MathSciNet  Google Scholar 

  11. M. Sen, M. Banerjee, A. Morozov, Ecol. Complex. 11, 12–27 (2012)

    Article  Google Scholar 

  12. K. Garain, P.S. Mandal, Int. J. Bifurc. Chaos 30(16), 2050238 (2020)

    Article  Google Scholar 

  13. O.N. Bjornstad, B.T. Grenfell, Science 293, 638 (2001)

    Article  Google Scholar 

  14. T. Coulson, P. Rohani, M. Pascual, Trends Ecol. Evol. 19, 359 (2004)

    Article  Google Scholar 

  15. M. Scheffer, S. Carpenter, J. Foley, C. Folke, B. Walker, Nature 413, 591 (2001)

    Article  ADS  Google Scholar 

  16. M. Scheffer, J. Bascompte, W.A. Brock, V. Brovkin, S.R. Carpenter, V. Dakos, H. Held, E.H. Van Nes, M. Rietkerk, G. Sugihara, Nature 461, 53 (2009)

    Article  ADS  Google Scholar 

  17. K. Higgins, A. Hastings, J.N. Sarvela, L.W. Bots-ford, Science 276, 1431 (1997)

    Article  Google Scholar 

  18. R.A. Myers, G. Mertz, J.M. Bridson, M.J. Bradford, Can. J. Fish. Aquat. Sci. 55, 2355 (1998)

    Article  Google Scholar 

  19. P. Lundberg, E. Ranta, J. Ripa, V. Kaitala, Trends Ecol. Evol. 15, 460 (2000)

    Article  Google Scholar 

  20. I. Bashkirtseva, L. Ryashko, Phys. A 278, 126–139 (2000)

    Article  Google Scholar 

  21. I. Bashkirtseva, L. Ryashko, Chaos 21, 047514 (2011)

    Article  ADS  Google Scholar 

  22. V. Guttal, C. Jayaprakash, Ecol. Lett. 11, 450 (2008)

    Article  Google Scholar 

  23. S. Ghosh, A.K. Pal, I. Bose, Eur. Phys. J. E 36, 123 (2013)

    Article  Google Scholar 

  24. J. Ma et al., Chaos 29, 081102 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  25. P.M. Vitousek, H.A. Mooney, J. Lubchenco, J.M. Melillo, Science 277, 494 (1997)

    Article  Google Scholar 

  26. J. Lubchenco, Science 279, 491 (1998)

    Article  ADS  Google Scholar 

  27. J.M. Fryxell, R. Hilborn, C. Bieg, K. Turgeon, A. Caskenette, K.S. McCann, Proc. Natl. Acad. Sci. USA 114, 12333 (2017)

    Article  Google Scholar 

  28. R. Myers, N. Barrowman, J. Hutchings, A. Rosenberg, Science 269, 1106 (1995)

    Article  ADS  Google Scholar 

  29. J.K. Baum, R.A. Myers, D.G. Kehler, B. Worm, S.J. Harley, P.A. Doherty, Science 299, 389 (2003)

    Article  ADS  Google Scholar 

  30. D.H. Cushing, D. Cushing, The Provident Sea (Cambridge University Press, Cambridge, 1988)

    MATH  Google Scholar 

  31. J.B. Jackson et al., Science 293, 629 (2001)

    Article  Google Scholar 

  32. C.F. Clements, M.A. McCarthy, J.L. Blanchard, Nat. Commun. 10, 1 (2019)

    Article  Google Scholar 

  33. T. Oguz, D. Gilbert, Deep Sea Res. Part I Oceanogr. Res. Papers 54, 220 (2007)

    Article  ADS  Google Scholar 

  34. A.C. Kraberg, N. Wasmund, J. Vanaverbeke, D. Schiedek, K.H. Wiltshire, N. Mieszkowska, Marine Pollut. Bull. 62, 7 (2011)

    Article  Google Scholar 

  35. A.J. Pershing, K.E. Mills, N.R. Record, K. Stamieszkin, K.V. Wurtzell, C.J. Byron, D. Fitzpatrick, W.J. Golet, E. Koob, Philos. Trans. R. Soc. B Biol. Sci. 370, 20130265 (2015)

    Article  Google Scholar 

  36. C.F. Clements, J.L. Blanchard, K.L. Nash, M.A. Hindell, A. Ozgul, Nat. Ecol. Evol. 1, 0188 (2017)

    Article  Google Scholar 

  37. V. Dakos et al., PLoS One 7, e41010 (2012)

    Article  ADS  Google Scholar 

  38. C. Wissel, Oecologia 65, 101 (1984)

    Article  ADS  Google Scholar 

  39. K. Wiesenfeld, B. McNamara, Phys. Rev. A 33, 629 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  40. S.R. Carpenter, W.A. Brock, J.J. Cole, J.F. Kitchell, M.L. Pace, Ecol. Lett. 11, 128 (2008)

    Google Scholar 

  41. E.H. Van Nes, M. Scheffer, Am. Nat. 169, 738 (2007)

    Article  Google Scholar 

  42. V. Dakos et al., Proc. Natl. Acad. Sci. 105, 14308 (2008)

    Article  ADS  Google Scholar 

  43. R. Biggs, S.R. Carpenter, W.A. Brock, Proc. Natl. Acad. Sci. USA 106, 826 (2009)

    Article  ADS  Google Scholar 

  44. S. Sarkar, S.K. Sinha, H. Levine, M.K. Jolly, P.S. Dutta, Proc. Natl. Acad. Sci. USA 116, 26343 (2019)

    Article  Google Scholar 

  45. C. Boettiger, A. Hastings, J. R. Soc. Interface 9, 2527 (2012)

    Article  Google Scholar 

  46. P.S. Mandal, L.J.S. Allen, M. Banerjee, Appl. Math. Model. 38, 1583–1596 (2014)

    Article  MathSciNet  Google Scholar 

  47. L.J.S. Allen, J.F. Fagan, G. Hognas, H. Fagerholm, J. Differ. Equ. Appl. 11, 273–293 (2005)

    Article  Google Scholar 

  48. R. Arumugam, S. Sarkar, T. Banerjee, S. Sinha, P.S. Dutta, Phys. Rev. E 99, 032216 (2019)

    Article  ADS  Google Scholar 

  49. S. Sarkar, A. Narang, S. Sinha, P.S. Dutta, Phys. Rev. E 103, 022401 (2021)

    Article  ADS  Google Scholar 

  50. M. Freidlin, A. Wentzell, Random Perturbations of Dynamical Systems (Springer, New York, 1984)

    Book  MATH  Google Scholar 

  51. S.I. Skurativskyi, I.A. Skurativska, Commun. Nonlinear Sci. Numer. Simul. 49, 9–16 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  52. I. Bashkirtseva, L. Ryashko, Int. J. Bifurc. Chaos 249, 1450109 (2014)

    Article  Google Scholar 

  53. P.S. Mandal, Phys. A 496, 40–52 (2018)

    Article  MathSciNet  Google Scholar 

  54. D. Wu, H. Wang, S. Yuan, Math. Biosci. Eng. 164, 2141–2153 (2019)

    Article  Google Scholar 

  55. K. Garain, Eur. Phys. J. Spec. Top. 230, 3381–3387 (2021)

    Article  Google Scholar 

  56. S.R. Carpenter et al., Fish Fish. 18, 1150 (2017)

    Article  Google Scholar 

  57. R.M. May, Nature 269, 471–477 (1977)

    Article  ADS  Google Scholar 

  58. K. Garain, P.S. Mandal, Ecol. Complex. 47, 100939 (2021)

    Article  Google Scholar 

  59. G. Teschl, Ordinary Differential Equations and Dynamical Systems (American Mathematical Society, Providence, 2012)

    Book  MATH  Google Scholar 

  60. L. Perko, Differential Equations and Dynamical Systems, vol. 7 (Springer, New York, 2000)

    MATH  Google Scholar 

  61. D.A. Seekell, S.R. Carpenter, M.L. Pace, Am. Nat. 178, 442–451 (2011)

    Article  Google Scholar 

  62. R.F. Engle, J. Econom. 20, 83–104 (1982)

    Article  Google Scholar 

  63. I. Bashkirtseva, L. Ryashko, Math. Comput. Simul. 66, 55 (2004)

    Article  Google Scholar 

  64. I. Bashkirtseva, A.B. Neiman, L. Ryashko, Phys. Rev. E 91, 052920 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  65. C. Gardiner, Stochastic Methods. A Handbook for the Natural and Social Sciences (Springer, Berlin, 2009)

    MATH  Google Scholar 

  66. H. Risken, J.H. Eberly, The Fokker-Planck Equation, Methods of Solution and Applications (Springer, Berlin, 1984)

    Book  MATH  Google Scholar 

  67. D.V. Alexandrov, I. Bashkirtseva, M. Crucifix, L. Ryashko, Phys. Rep. 902, 1–60 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  68. M. Dembo, O. Zeitouni, Large Deviations Techniques and Applications (Jones and Bartlett, Boston, 1995)

    MATH  Google Scholar 

  69. G.N. Milshtein, L. Ryashko, J. Appl. Math. Mech. 59, 47–56 (1995)

    Article  MathSciNet  Google Scholar 

  70. I. Bashkirtseva, V. Nasyrova, L. Ryashko, Chaos Solitons Fractals 110, 76–81 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  71. R.A. Fisher, Proc. Camb. Philos. Soc. 26, 528–535 (1930)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Koushik Garain’s research is supported by University Grant Commission, India (Student Id: MAY2018-442750) and Partha Sarathi Mandal’s research is supported by MATRICS Project, DST, SERB, India [File No:MTR/2019/000317].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Partha Sarathi Mandal.

Appendix 1

Appendix 1

Stochastic sensitivity function (SSF) technique [21, 63, 64]:

The system of stochastic differential equations can be written in the following form:

$$\begin{aligned} {\dot{x}}=f(x)+\sigma g(x)\xi , \end{aligned}$$
(A.1)

where x is n-vector, f(x) is a n-vector function, \(\xi (t)\) is a n-dimensional Gaussian white noise satisfying \(\langle \xi (t)\rangle =0,\langle \xi (t)\xi (\tau ) \rangle =\delta (t-\tau )I\), I is an identity matrix , g(x) is \(n\times n\) matrix-valued function of disturbances and noise intensity is \(\sigma \).

We must find a stable interior equilibrium point of the corresponding deterministic system (when \(\sigma =0\)). Let the stable equilibrium point is \(x_*\). When we add noise in the system, ordinary differential equation transformed to a stochastic differential equation or Ito equation. It is supposed that attractor \(x_*\) is exponentially stable. It means that for the small neighbourhood N of the attractor \(x_*\), there exist constants \(M > 0\); \(k > 0\) such that for any solution x(t) of the deterministic system with \(x(0) = x_0 \in N\) the following inequality holds

$$\begin{aligned} \parallel \bigtriangleup (x(t))\parallel \le M e^{-kt}\parallel \bigtriangleup (x_0)\parallel \end{aligned}$$

Here, \(\bigtriangleup (x) = x-x_*\) is a vector of a deviation of the point x from the attractor.

Now, for the corresponding stochastic system, a set of random trajectories is generated. For small noise, the random trajectories are localized in the neighborhood of \(x_*\) owing to the exponential stability of \(x_*\) and form a stationary probabilistic distribution \(\rho (x,\sigma )\), which satisfies the following stationary Fokker–Planck–Kolmogorov equation [65,66,67]:

$$\begin{aligned} \frac{\sigma ^2}{2}\sum \frac{\partial ^2}{\partial x_{i}\partial x_{j}}(a_{ij}\rho )-\sum \frac{\partial }{\partial x_{i}}(f_{i}\rho )=0,a_{ij}=[gg^T]_{ij}.\nonumber \\ \end{aligned}$$
(A.2)

Even for a two dimensional case, it is very difficult to solve this equation. But we can find solution by approximation. For a small noise, we use the approximation of \(\rho (x,\sigma )\), based on the quasipotential v(x) [50, 68]

$$\begin{aligned} \rho (x,\sigma ) \thickapprox K exp\left( -\frac{v(x)}{\sigma ^2}\right) , \end{aligned}$$

where v(x) satisfies the Hamilton–Jacobi equation:

$$\begin{aligned} \left( f,\frac{\partial v}{\partial x}\right) +\frac{1}{2}\left( \frac{\partial v}{\partial x},gg^{T}\frac{\partial v}{\partial x}\right) =0. \end{aligned}$$

Quadratic approximation of v(x) near the stable equilibrium point is \(v(x) \thickapprox \frac{1}{2}(x-x_*,V(x-x_*)),\) since \(v(x_*)=0\) and \(\frac{\partial v}{\partial x}\big |_{x_*}=0\). V is a positive definite \(n\times n\) matrix. Now the Gaussian approximation of \(\rho (x,\sigma )\) is

$$\begin{aligned} \rho (x,\sigma ) \thickapprox Kexp\left( -\frac{(x-x_*,W^{-1}(x-x_*))}{2\sigma ^2}\right) , \end{aligned}$$

with the covariance matrix \(\sigma ^2W\), where \(W=V^{-1}\).

A dispersion (mean-square deviation) of random states near \(x_*\) can be approximated by the following formula [63, 64, 69, 70]:

$$\begin{aligned} E(x-x_*)(x-x_*)^T \thickapprox \sigma ^2W. \end{aligned}$$
(A.3)

Here, the matrix W is positive definite and it is the solution of the following matrix equation [69]:

$$\begin{aligned} FW+WF^T+S=0, F=\frac{\partial f}{\partial x}(x_*),S=g(x_*)g^T(x_*).\nonumber \\ \end{aligned}$$
(A.4)

The matrix W is called the stochastic sensitivity function and it characterizes a configurational arrangement of random states of the stochastic system around the deterministic equilibrium \(x_*\)

$$\begin{aligned} (x-x_*,W^{-1}(x-x_*))=2\sigma ^2k. \end{aligned}$$
(A.5)

Here, \(k=-\ln (1-P)\), P is a fiducial probability. Fiducial probability was introduced by R.A. Fisher in 1930 [71], which involves inversion of a probability statement from the distribution function. This means that the random states belong to the interior of this ellipse with probability P.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, P.S., Garain, K. Two-stage noise-induced critical transitions in a fish population model with Allee effect in predators. Eur. Phys. J. B 95, 63 (2022). https://doi.org/10.1140/epjb/s10051-022-00321-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00321-0

Navigation