Skip to main content
Log in

Quantum coherence of a single NV center in a spin-cavity hybrid system

  • Regular Article - Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Hybrid interfaces between photonic cavities and quantum emitters are promising physical platforms in the fields of quantum sensing, quantum metrology and quantum information processing. Light-matter interaction in these systems can be engineered into the regime of strong coupling and ultrastrong coupling. In this work we experimentally explore the coherent properties of a single solid spin in a hybrid system consisting of a nitrogen-vacancy center in nanodiamond and a metal-dielectric cavity. We statistically characterize the cavity enhancement factor of fluorescence intensity for a group of single nitrogen-vacancy centers. The fluorescence intensity of a single nitrogen-vacancy center can be enhanced in a metal-dielectric cavity with a factor about 3. We measure the relaxation time \(T_1\) and decoherence time \(T_2\) of nitrogen-vacancy centers and show the robustness of spin coherent properties in a cavity. This work shows the possibility of selectively controlling on the optical and spin coherence of a single nitrogen-vacancy center in a nanocavity. The spin-cavity hybrid system can be further used in applications such as quantum sensing and quantum engineering with nitrogen-vacancy centers.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: We have included all data in the form of graphs and text in the manuscript. There are no additional data to provide.]. The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M.W. Doherty, N.B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, L.C. Hollenberg, Phys. Rep. 528(1), 1 (2013)

    Article  ADS  Google Scholar 

  2. F. Jelezko, T. Gaebel, I. Popa, A. Gruber, J. Wrachtrup, Phys. Rev. Lett. 92(7), 076401 (2004)

    Article  ADS  Google Scholar 

  3. A. Lenef, S. Rand, Phys. Rev. B 53(20), 13441 (1996)

    Article  ADS  Google Scholar 

  4. W.B. Gao, A. Imamoglu, H. Bernien, R. Hanson, Nat. Photonics 9(6), 363 (2015)

    Article  ADS  Google Scholar 

  5. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler et al., Nat. Mater. 8(5), 383 (2009)

    Article  ADS  Google Scholar 

  6. N. Bar-Gill, L.M. Pham, A. Jarmola, D. Budker, R.L. Walsworth, Nat. Commun. 4(1), 1 (2013)

    Article  Google Scholar 

  7. M.V.G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A.S. Zibrov, P.R. Hemmer, M.D. Lukin, Science 316(5829), 1312 (2007)

    Article  Google Scholar 

  8. L. Childress, M.G. Dutt, J. Taylor, A. Zibrov, F. Jelezko, J. Wrachtrup, P. Hemmer, M. Lukin, Science 314(5797), 281 (2006)

    Article  ADS  Google Scholar 

  9. Z.L. Xiang, S. Ashhab, J. You, F. Nori, Rev. Mod. Phys. 85(2), 623 (2013)

    Article  ADS  Google Scholar 

  10. P. Rabl, P. Cappellaro, M.G. Dutt, L. Jiang, J. Maze, M.D. Lukin, Phys. Rev. B 79(4), 041302 (2009)

    Article  ADS  Google Scholar 

  11. S. Bennett, N.Y. Yao, J. Otterbach, P. Zoller, P. Rabl, M.D. Lukin, Phys. Rev. Lett. 110(15), 156402 (2013)

    Article  ADS  Google Scholar 

  12. L. Zou, D. Marcos, S. Diehl, S. Putz, J. Schmiedmayer, J. Majer, P. Rabl, Phys. Rev. Lett. 113(2), 023603 (2014)

    Article  ADS  Google Scholar 

  13. D. Marcos, M. Wubs, J. Taylor, R. Aguado, M.D. Lukin, A.S. Sørensen, Phys. Rev. Lett. 105(21), 210501 (2010)

    Article  ADS  Google Scholar 

  14. J.M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P.R. Hemmer, A. Yacoby, R. Walsworth, M.D. Lukin, Nat. Phys. 4(10), 810 (2008)

    Article  Google Scholar 

  15. J.R. Maze, P.L. Stanwix, J.S. Hodges, S. Hong, J.M. Taylor, P. Cappellaro, L. Jiang, M.G. Dutt, E. Togan, A. Zibrov et al., Nature 455(7213), 644 (2008)

    Article  ADS  Google Scholar 

  16. C.L. Degen, F. Reinhard, P. Cappellaro, Rev. Mod. Phys. 89(3), 035002 (2017)

    Article  ADS  Google Scholar 

  17. T. Schröder, F. Gädeke, M.J. Banholzer, O. Benson, New J. Phys. 13(5), 055017 (2011)

    Article  ADS  Google Scholar 

  18. G. Waldherr, Y. Wang, S. Zaiser, M. Jamali, T. Schulte-Herbrüggen, H. Abe, T. Ohshima, J. Isoya, J.F. Du, P. Neumann, J. Wrachtrup, Nature 506(7487), 204 (2014)

    Article  ADS  Google Scholar 

  19. M.W. Doherty, C.A. Meriles, A. Alkauskas, H. Fedder, M.J. Sellars, N.B. Manson, Phys. Rev. X 6(4), 041035 (2016)

    Google Scholar 

  20. F. Casola, T. van der Sar, A. Yacoby, Nat. Rev. Mater. 3(1), 1 (2018)

    Article  Google Scholar 

  21. P. Lodahl, S. Mahmoodian, S. Stobbe, Rev. Mod. Phys. 87(2), 347 (2015)

    Article  ADS  Google Scholar 

  22. M. Turunen, M. Brotons-Gisbert, Y. Dai, Y. Wang, E. Scerri, C. Bonato, K.D. Jöns, Z. Sun, B.D. Gerardot, Nat. Rev. Phys. 2522, 1–18 (2022)

  23. M. Ruf, N.H. Wan, H. Choi, D. Englund, R. Hanson, J. Appl. Phys. 130(7), 070901 (2021)

    Article  ADS  Google Scholar 

  24. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  25. Y. Luo, G.D. Shepard, J.V. Ardelean, D.A. Rhodes, B. Kim, K. Barmak, J.C. Hone, S. Strauf, Nat. Nanotechnol. 13(12), 1137 (2018)

    Article  ADS  Google Scholar 

  26. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, M.D. Lukin, Nano Lett. 10(10), 3922 (2010)

    Article  ADS  Google Scholar 

  27. D.F. Li, C.H. Li, L.M. Zhou, Y. Zheng, B.W. Zhao, S. Li, N. Zhao, X.D. Chen, G.C. Guo, F.W. Sun, Opt. Lett. 43(22), 5587 (2018)

    Article  ADS  Google Scholar 

  28. T.S. Lim, C.C. Fu, K.C. Lee, H.Y. Lee, K. Chen, W.F. Cheng, W.W. Pai, H.C. Chang, W. Fann, Phys. Chem. Chem. Phys. 11(10), 1508 (2009)

    Article  Google Scholar 

  29. X. Gao, B. Jiang, A.E.L. Allcca, K. Shen, M.A. Sadi, A.B. Solanki, P. Ju, Z. Xu, P. Upadhyaya, Y.P. Chen, S.A. Bhave, T. Li, Nano Lett. 21(18), 7708 (2021)

  30. P. Ghenuche, J. de Torres, S.B. Moparthi, V. Grigoriev, J. Wenger, Nano Lett. 14(8), 4707 (2014)

    Article  ADS  Google Scholar 

  31. S. Bidault, M. Mivelle, N. Bonod, J. Appl. Phys. 126(9), 094104 (2019)

    Article  ADS  Google Scholar 

  32. Y.C. Lee, Y.C. Tseng, H.L. Chen, ACS Photonics 4(1), 93 (2017)

    Article  Google Scholar 

  33. D. Yoon, H. Moon, Y.W. Son, J.S. Choi, B.H. Park, Y.H. Cha, Y.D. Kim, H. Cheong, Phys. Rev. B 80(12), 125422 (2009)

    Article  ADS  Google Scholar 

  34. S.J. Kuo, P.C. Tsai, Y.C. Lee, S.W. Chang, S. Sotoma, C.Y. Fang, H.C. Chang, H.L. Chen, Nanoscale 10(37), 17576 (2018)

    Article  Google Scholar 

  35. R. Beams, D. Smith, T.W. Johnson, S.H. Oh, L. Novotny, A.N. Vamivakas, Nano Lett. 13(8), 3807 (2013)

    Article  ADS  Google Scholar 

  36. A. Faraon, C. Santori, Z. Huang, V.M. Acosta, R.G. Beausoleil, Phys. Rev. Lett. 109(3), 033604 (2012)

    Article  ADS  Google Scholar 

  37. L. Li, T. Schröder, E.H. Chen, M. Walsh, I. Bayn, J. Goldstein, O. Gaathon, M.E. Trusheim, M. Lu, J. Mower et al., Nat. Commun. 6(1), 1 (2015)

    Google Scholar 

  38. M.J. Burek, J.D. Cohen, S.M. Meenehan, N. El-Sawah, C. Chia, T. Ruelle, S. Meesala, J. Rochman, H.A. Atikian, M. Markham et al., Optica 3(12), 1404 (2016)

  39. M. Ruf, M.J. Weaver, S.B. van Dam, R. Hanson, Phys. Rev. Appl. 15(2), 024049 (2021)

    Article  ADS  Google Scholar 

  40. Y. Duan, K.C. Chen, D.R. Englund, M.E. Trusheim, Opt. Express 29(26), 43082 (2021)

    Article  ADS  Google Scholar 

  41. R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, C. Becher, Phys. Rev. Lett. 110(24), 243602 (2013)

    Article  ADS  Google Scholar 

  42. S. Kolkowitz, Q.P. Unterreithmeier, S.D. Bennett, M.D. Lukin, Phys. Rev. Lett. 109(13), 137601 (2012)

    Article  ADS  Google Scholar 

  43. J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, G. Wang, Phys. Rev. B 91, 155404 (2015)

    Article  ADS  Google Scholar 

  44. J.F. Wang, H.L. Zhou, X. Xiong, Q. Li, Z.D. Cheng, Z.H. Liu, F.F. Yan, S.R. Lin, J.S. Xu, G.Z. Wang et al., Carbon 161, 794 (2020)

    Article  Google Scholar 

  45. X. Song, J. Zhang, F. Feng, J. Wang, W. Zhang, L. Lou, W. Zhu, G. Wang, AIP Adv. 4(4), 047103 (2014)

    Article  ADS  Google Scholar 

  46. C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, Phys. Rev. Lett. 85(2), 290 (2000)

    Article  ADS  Google Scholar 

  47. R. Brouri, A. Beveratos, J.P. Poizat, P. Grangier, Opt. Lett. 25(17), 1294 (2000)

    Article  ADS  Google Scholar 

  48. L. Pezze, A. Smerzi, M.K. Oberthaler, R. Schmied, P. Treutlein, Rev. Mod. Phys. 90(3), 035005 (2018)

    Article  ADS  Google Scholar 

  49. J.F. Barry, J.M. Schloss, E. Bauch, M.J. Turner, C.A. Hart, L.M. Pham, R.L. Walsworth, Rev. Mod. Phys. 92(1), 015004 (2020)

    Article  ADS  Google Scholar 

  50. W. Witzel, S.D. Sarma, Phys. Rev. B 74(3), 035322 (2006)

    Article  ADS  Google Scholar 

  51. W. Witzel, X. Hu, S.D. Sarma, Phys. Rev. B 76(3), 035212 (2007)

    Article  ADS  Google Scholar 

  52. J. Maze, J. Taylor, M. Lukin, Phys. Rev. B 78(9), 094303 (2008)

    Article  ADS  Google Scholar 

  53. W. Yang, W.L. Ma, R.B. Liu, Rep. Prog. Phys. 80(1), 016001 (2016)

    Article  ADS  Google Scholar 

  54. X.Y. Lü, Z.L. Xiang, W. Cui, J. You, F. Nori, Phys. Rev. A 88(1), 012329 (2013)

    Article  ADS  Google Scholar 

  55. A. Abragam, The Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961)

    Google Scholar 

  56. C.P. Slichter, Principles of Magnetic Resonance, vol. 1 (Springer Science and Business Media, Berlin, 2013)

    Google Scholar 

  57. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, Oxford, 2012)

    Google Scholar 

  58. A. Jarmola, V.M. Acosta, K. Jensen, S. Chemerisov, D. Budker, Phys. Rev. Lett. 108(19), 197601 (2012)

    Article  ADS  Google Scholar 

  59. A.A. Clerk, M.H. Devoret, S.M. Girvin, F. Marquardt, R.J. Schoelkopf, Rev. Mod. Phys. 82(2), 1155 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11374280 and No. 50772110). We thank Changfeng Wong for drawing the illustration of a spin-cavity system.

Author information

Authors and Affiliations

Authors

Contributions

JZ and JW proposed the initial idea on this research. JZ and SL designed and performed experiments, analyzed the data. JZ wrote the manuscript with the help of LL. GW and WZ supervised the project.

Corresponding author

Correspondence to Guanzhong Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Lin, S., Wang, J. et al. Quantum coherence of a single NV center in a spin-cavity hybrid system. Eur. Phys. J. B 95, 61 (2022). https://doi.org/10.1140/epjb/s10051-022-00317-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00317-w

Navigation