Skip to main content
Log in

Geometry dependent current–voltage characteristics of T-stub zigzag-edged graphene nanoribbon quantum waveguides

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Zigzag-edged graphene nanoribbon (ZGNR) has great potential in designing quantum waveguide devices to conduct electric currents metallically. Using non-equilibrium Green’s function (NEGF) method, we theoretically study geometry dependent transport properties and current–voltage (I–V) characteristics of T-stub ZGNR quantum waveguides sized in tens of nanometers. Instead of the perfect transmission in straight ZGNR, anti-resonance effects appear in transmission spectrum due to strong electronic reflection depending on the size of central region in T-stub ZGNR. In addition, the I–V characteristics of T-stub ZGNR quantum waveguides are mainly influenced by the transverse width of the central region. Meanwhile, the current flowing over the T-stub ZGNR quantum waveguides gradually converges as the longitudinal length of the central region increases. We also find that a single edge-defect at certain positions of the central region may slightly suppress the transmission and reduce the current. Our findings provide a viable design option for adjusting current response in graphene-based quantum devices.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the results presented in the paper can be reproduced with the information provided in the manuscript.]

References

  1. M. Sledzinska, B. Graczykowski, J. Maire et al., Adv. Func. Mater. 30, 1904434 (2020)

    Article  Google Scholar 

  2. W. Li, F. Meng, Y. Chen et al., Adv. Theory Simul. 2, 1900017 (2019)

    Article  Google Scholar 

  3. C. Muhammad, Lim, J.Reddy, et al., Mech. Adv. Mater. Struct. 27, 1053–1064 (2020)

  4. A. Weisshaar, J. Lary, S.M. Goodnick et al., J. Appl. Phys. 70, 355–366 (1991)

    Article  ADS  Google Scholar 

  5. H. Shin, W. Qiu, R. Jarecki et al., Nat. Commun. 4, 1–10 (2013)

    Google Scholar 

  6. Ü. Keleş, A. Çakan, C. Bulutay, J. Appl. Phys. 117, 064308 (2015)

    Article  ADS  Google Scholar 

  7. E. Kim, X. Zhang, V.S. Ferreira et al., Phys. Rev. X 11, 011015 (2021)

    Google Scholar 

  8. P. Debray, O. Raichev, P. Vasilopoulos et al., Phys. Rev. B 61, 10950–10958 (2000)

    Article  ADS  Google Scholar 

  9. K.M. Li, Z.X. Xie, K.L. Su et al., Phys. Lett. A 378, 1383–1387 (2014)

    Article  ADS  Google Scholar 

  10. C. Liu, J. Zhang, M. Muruganathan et al., Carbon 165, 476–483 (2020)

    Article  Google Scholar 

  11. C.H. Chen, W.W. Li, Y.M. Chang et al., Phys. Rev. Appl. 10, 044047 (2018)

    Article  ADS  Google Scholar 

  12. Y. Betancur-Ocampo, E. Paredes-Rocha, T. Stegmann, J. Appl. Phys. 128, 114303 (2020)

    Article  ADS  Google Scholar 

  13. M. Kim, J.H. Choi, S.H. Lee et al., Nat. Phys. 12, 1022–1026 (2016)

    Article  Google Scholar 

  14. N.A. Shah, V. Mosallanejad, K.L. Chiu et al., Phys. Rev. B 100, 125412 (2019)

    Article  ADS  Google Scholar 

  15. A. Cheng, T. Taniguchi, K. Watanabe et al., Phys. Rev. Lett. 123, 216804 (2019)

    Article  ADS  Google Scholar 

  16. Y. Ren, P. Wan, L. Zhou et al., Phys. Rev. B 103, 085431 (2021)

  17. Z. Zhang, Z. Wu, K. Chang et al., Nanotechnology 20, 415203 (2009)

    Article  ADS  Google Scholar 

  18. Z. Wu, Z. Zhang, K. Chang et al., Nanotechnology 21, 185201 (2010)

    Article  ADS  Google Scholar 

  19. E.J. Ye, Y. Nie, H. Shi et al., J. Appl. Phys. 117, 014303 (2015)

    Article  ADS  Google Scholar 

  20. L. Zhang, J. Phys.: Condens. Matter 29, 055304 (2016)

    ADS  Google Scholar 

  21. J. Xu, L. Wang, M. Weng, J. Appl. Phys. 114, 153701 (2013)

    Article  ADS  Google Scholar 

  22. Y.J. Shi, J. Lan, E.J. Ye et al., Eur. Phys. J. B 87, 1–5 (2014)

    Article  Google Scholar 

  23. M. Kruskopf, A.F. Rigosi, A.R. Panna et al., IEEE Trans. Electron Dev. 66, 3973–3977 (2019)

    Article  ADS  Google Scholar 

  24. A. Badmaev, Y. Che, Z. Li et al., ACS Nano 6, 3371–3376 (2012)

    Article  Google Scholar 

  25. J. Sui, K.L. Wu, IEEE Trans. Microw. Theory Tech. 65, 2111–2121 (2017)

    Article  ADS  Google Scholar 

  26. H. Yin, Mod. Phys. Lett. B 24, 1173–1184 (2010)

    Article  ADS  Google Scholar 

  27. J. Lan, E.J. Ye, W.Q. Sui et al., Phys. Chem. Chem. Phys. 15, 671–679 (2013)

    Article  Google Scholar 

  28. V.H. Nguyen, J. Saint-Martin, D. Querlioz et al., J. Comput. Electron. 12, 85–93 (2013)

    Article  Google Scholar 

  29. S. Moysidis, I.G. Karafyllidis, Microelectron. J. 72, 11–13 (2018)

    Article  Google Scholar 

  30. Q. Zhang, K. Chan, Phys. Lett. A 383, 1967–1971 (2019)

    Article  ADS  Google Scholar 

  31. D.L. Tiwari, K. Sivasankaran, Superlattices Microstruct. 136, 106308 (2019)

    Article  Google Scholar 

  32. S.Z. Ye, H. Wang et al., Phys. Chem. Chem. Phys. 22, 18265–18271 (2020)

    Article  Google Scholar 

  33. C. Liu, J. Zhang et al., Carbon 165, 476–483 (2020)

    Article  Google Scholar 

  34. W.S. Hwang, P. Zhao et al., 2D Mater. Appl. 3, 1–7 (2019)

    Article  Google Scholar 

  35. X. Zhang, Y. Liu, AIP Adv. 9, 115209 (2019)

    Article  ADS  Google Scholar 

  36. K. Wakabayashi, K.I. Sasaki, T. Nakanishi et al., Sci. Technol. Adv. Mater. 11, 054504 (2010)

    Article  Google Scholar 

  37. K. Nakada, M. Fujita et al., Phys. Rev. B 54, 17954 (1996)

    Article  ADS  Google Scholar 

  38. L. Brey, H.A. Fertig, Phys. Rev. B 73, 235411 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work in this study is supported by the National Natural Science Foundation of China (Grant Nos. 61874078, 61904125), the National KeyResearch and Development Program of China (Grant No. 2018YFB2202100) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LY20F040007).

Author information

Authors and Affiliations

Authors

Contributions

Peng-Jun Wang, Yi-Jian Shi and Yuan-Chun Wang all participated in the design of this study. Yi-Jian Shi and Yuan-Chun Wang established the theoretical model and carried out the numerical simulations. Yi-Jian Shi and Yuan-Chun Wang interpreted and concluded the results. Yuan-Chun Wang wrote the first draft of the manuscript. Peng-Jun Wang and Yi-Jian Shi supervised the project and revised the final manuscript.

Corresponding author

Correspondence to Yi-Jian Shi.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 76 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YC., Shi, YJ. & Wang, PJ. Geometry dependent current–voltage characteristics of T-stub zigzag-edged graphene nanoribbon quantum waveguides. Eur. Phys. J. B 95, 35 (2022). https://doi.org/10.1140/epjb/s10051-022-00297-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00297-x

Navigation