Skip to main content
Log in

Multiple timescale molecular dynamics with very large time steps: avoidance of resonances

  • Topical Review - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Reversible multiple timescale (MTS) integration algorithms have long been recognized as a straightforward way to increase efficiency and extend accessible timescales in molecular dynamics simulations without altering the ensemble distribution sampled. MTS methods are based on the idea that interatomic forces in a system drive motion on numerous timescales, and by decomposing force components according to these timescales and assigning an individual time step to each one, fast, computationally cheaper forces are evaluated more frequently than the slow, expensive forces. As it happens, the largest time step that can be employed in standard MTS methods is fundamentally limited by so-called resonance artifacts that originate in the fastest timescales. Thus, while it should be possible to assign the slowest timescales very large time steps approaching 100 fs in, for example, fully atomistic simulations, resonances impose a practical limit on this step size to around 5–10 fs, which allows for useful but only modest savings in computational overhead. This article will review the basic MTS approach and the origin of resonances and then will provide a perspective on how to solve the resonance problem for molecular dynamics simulations in different ensembles, showing how both statistical and dynamical properties can be generated with very large time steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

The manuscript has associated data in a data repository. [Authors’ comment: The data will be made available by making a request to either of the authors.]

References

  1. H. Grubmüller, H. Heller, A. Windemuth, K. Schulten, Mol. Simul 6(1–3), 121 (1991)

    Article  Google Scholar 

  2. M. Tuckerman, B.J. Berne, G.J. Martyna, J. Chem. Phys. 97(3), 1990 (1992). https://doi.org/10.1063/1.463137

    Article  ADS  Google Scholar 

  3. G.J. Martyna, M.E. Tuckerman, D.J. Tobias, M.L. Klein, Mol. Phys. 87(5), 1117 (1996)

    Article  ADS  Google Scholar 

  4. J.J. Biesiadecki, R.D. Skeel, J. Comput. Phys. 109(2), 318 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  5. T. Schlick, M. Mandziuk, R.D. Skeel, K. Srinivas, J. Comput. Phys. 140, 1 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  6. Q. Ma, J.A. Izaguirre, R.D. Skeel, SIAM, J. Sci. Comput. 24, 1951 (2003)

  7. B. García-Archilla, J.M. Sanz-Serna, R.D. Skeel, SIAM J Sci. Comput. 20(3), 930 (1998). https://doi.org/10.1137/s1064827596313851

    Article  Google Scholar 

  8. R.D. Skeel, J.A. Izaguirre, in Computational Molecular Dynamics: Challenges, Methods, Ideas, vol. 4, ed. by M. Griebel, D.E. Keyes, R.M. Nieminen, D. Roose, T. Schlick, P. Deuflhard, J. Hermans, B. Leimkuhler, A.E. Mark, S. Reich, R.D. Skeel (Springer, Berlin Heidelberg, Berlin, Heidelberg, 1999), pp. 318–331

  9. J.A. Morrone, T.E. Markland, M. Ceriotti, B.J. Berne, J. Chem. Phys. 134(1), 014103 (2011)

    Article  ADS  Google Scholar 

  10. P. Minary, G.J. Martyna, M.E. Tuckerman, J. Chem. Phys. 118(6), 2510 (2003)

    Article  ADS  Google Scholar 

  11. P. Minary, G.J. Martyna, M.E. Tuckerman, J. Chem. Phys. 118(6), 2527 (2003)

    Article  ADS  Google Scholar 

  12. P. Minary, M.E. Tuckerman, G.J. Martyna, Phys. Rev. Lett. 93, 15 (2004)

    Article  Google Scholar 

  13. B. Leimkuhler, D.T. Margul, M.E. Tuckerman, Mol. Phys. 111(22–23), 3579 (2013)

    Article  ADS  Google Scholar 

  14. G.J. Martyna, M.L. Klein, M. Tuckerman, J. Chem. Phys 97(4), 2635 (1992)

    Article  ADS  Google Scholar 

  15. A.A. Samoletov, C.P. Dettmann, M.A.J. Chaplain, J. Stat. Phys 128(6), 1321 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  16. B. Leimkuhler, E. Noorizadeh, F. Theil, J. Stat. Phys 135(2), 261 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  17. C.R.A. Abreu, M.E. Tuckerman, Molecular Physics p. e1923848 (2021). https://doi.org/10.1080/00268976.2021.1923848

  18. S. Nosé, J. Chem. Phys. 81(1), 511 (1984)

    Article  ADS  Google Scholar 

  19. W.G. Hoover, Phys. Rev. A 31(3), 1695 (1985)

    Article  ADS  Google Scholar 

  20. R. Korol, N. Bou-Rabee, T.F. Miller, J. Chem. Phys. 151(12), 124103 (2019)

    Article  ADS  Google Scholar 

  21. M.E. Tuckerman, Statistical mechanics: theory and molecular simulation (Oxford University Press, Oxford, 2010)

    MATH  Google Scholar 

  22. M. Parrinello, A. Rahman, J. Chem. Phys. 80, 860 (1984)

    Article  ADS  Google Scholar 

  23. M.E. Tuckerman, G.J. Martyna, M.L. Klein, B.J. Berne, J. Chem. Phys. 99, 2796 (1993)

    Article  ADS  Google Scholar 

  24. S.J. Marrink, H.J. Risselada, S. Yefimov, D.P. Tieleman, A.H. de Vries, J. Phys. Chem. B 111(27), 7812 (2007)

    Article  Google Scholar 

  25. S. Kmiecik, D. Gront, M. Kolinski, L. Wieteska, A.E. Dawid, A. Kolinski, Chem. Rev. 116(14), 7898 (2016)

    Article  Google Scholar 

  26. A.E. Hafner, J. Krausser, A. Šarić, Curr. Opin. Struct. Biol. 58, 43 (2019)

    Article  Google Scholar 

  27. K. Kempfer, J. Devémy, A. Dequidt, M. Couty, P. Malfreyt, ACS Omega 4(3), 5955 (2019)

    Article  Google Scholar 

  28. E. Barth, T. Schlick, J. Chem. Phys. 109, 1633 (1998)

    Article  ADS  Google Scholar 

  29. D.T. Margul, M.E. Tuckerman, J. Chem. Theory Comput. 12(5), 2170 (2016)

    Article  Google Scholar 

  30. A. Albaugh, M.E. Tuckerman, T. Head-Gordon, J. Chem. Theory Comput. 15(4), 2195 (2019)

    Article  Google Scholar 

  31. C.R.A. Abreu, M.E. Tuckerman, J. Chem. Theory Comput. 16(12), 7314 (2020)

    Article  Google Scholar 

  32. K.F. Gauss, Reine Angew. Math. IV 232(1829)

  33. M.E. Tuckerman, J. Alejandre, R. Lopez-Rendon, A.L. Jochim, G.J. Martyna, J. Phys. A 39(19), 5629 (2006). https://doi.org/10.1088/0305-4470/39/19/S18

    Article  ADS  MathSciNet  Google Scholar 

  34. Y. Andoh, N. Yoshii, A. Yamada, S. Okazaki, J. Comput. Chem. 38(10), 704 (2017). https://doi.org/10.1002/jcc.24731

    Article  Google Scholar 

  35. G. Kalibaeva, M. Ferrario, G. Ciccotti, Mol. Phys. 101(6), 765 (2003). https://doi.org/10.1080/0026897021000044025

    Article  ADS  Google Scholar 

  36. V. Marry, G. Ciccotti, J. Comput. Phys. 222(1), 428 (2007). https://doi.org/10.1016/j.jcp.2006.07.033

    Article  ADS  MathSciNet  Google Scholar 

  37. G.J. Martyna, D.J. Tobias, M.L. Klein, J. Chem. Phys. 101(5), 4177 (1994). https://doi.org/10.1063/1.467468

    Article  ADS  Google Scholar 

  38. S. Plimpton, J.Comput.Phys. 117(1), 1 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  ADS  Google Scholar 

  39. S. Plimpton, A. Kohlmeyer, A. Thompson, S. Moore, R. Berger. Lammps stable release 29 october 2020 (2020). https://doi.org/10.5281/zenodo.3726416

  40. Z. Zhang, X. Liu, Z. Chen, H. Zheng, K. Yan, J. Liu, J.Chem.Phys. 147(3), 034109 (2017). https://doi.org/10.1063/1.4991621

    Article  ADS  Google Scholar 

  41. Z. Zhang, X. Liu, K. Yan, M.E. Tuckerman, J. Liu, J. Phys. Chem. A 123(28), 6056 (2019). https://doi.org/10.1021/acs.jpca.9b02771

    Article  Google Scholar 

  42. B. Leimkuhler, C. Matthews, Molecular Dynamics With Deterministic and Stochastic Numerical Methods, Interdisciplinary Applied Mathematics, vol. 39 (Springer International Publishing, Cham, 2015). https://doi.org/10.1007/978-3-319-16375-8

  43. T.S. Lee, Z. Lin, B.K. Allen, C. Lin, B.K. Radak, Y. Tao, H.C. Tsai, W. Sherman, D.M. York, J. Chem. Theory Comput. 16(9), 5512 (2020). https://doi.org/10.1021/acs.jctc.0c00237

    Article  Google Scholar 

  44. R.W. Hockney, J.W. Eastwood, Computer simulation using particles (Publisher, CRC Press, Boca Raton, 1988)

    Book  MATH  Google Scholar 

  45. T. Darden, D. York, L. Pedersen, J. Chem. Phys. 98(12), 10089 (1993)

    Article  ADS  Google Scholar 

  46. R. Zhou, E. Harder, H. Xu, B.J. Berne, J. Chem. Phys. 115(5), 2348 (2001). https://doi.org/10.1063/1.1385159

    Article  ADS  Google Scholar 

  47. J.A. Morrone, R. Zhou, B.J. Berne, J. Chem. Theory Comput. 6(6), 1798 (2010)

    Article  Google Scholar 

  48. J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, J. Comput. Chem. 25(9), 1157 (2004). https://doi.org/10.1002/jcc.20035

    Article  Google Scholar 

  49. Y. Wu, H.L. Tepper, G.A. Voth, J. Chem. Phys. 124(2), 024503 (2006). https://doi.org/10.1063/1.2136877

    Article  ADS  Google Scholar 

  50. P. Eastman, J. Swails, J.D. Chodera, R.T. McGibbon, Y. Zhao, K.A. Beauchamp, L.P. Wang, A.C. Simmonett, M.P. Harrigan, C.D. Stern, R.P. Wiewiora, B.R. Brooks, V.S. Pande, PLOS Comput. Biol. 13(7), e1005659 (2017)

    Article  Google Scholar 

  51. T.C. Beutler, A.E. Mark, R.C. van Schaik, P.R. Gerber, W.F. van Gunsteren, Chem. Phys. Lett. 222(6), 529 (1994). https://doi.org/10.1016/0009-2614(94)00397-1

    Article  ADS  Google Scholar 

  52. M.R. Shirts, J.D. Chodera, J. Chem. Phys. 129(12), 124105 (2008). https://doi.org/10.1063/1.2978177

    Article  ADS  Google Scholar 

  53. J.D. Chodera, W.C. Swope, J.W. Pitera, C. Seok, K.A. Dill, J. Chem. Theory Comput. 3(1), 26 (2007)

    Article  Google Scholar 

  54. M. Ceriotti, G. Bussi, M. Parrinello, J Chem. Theory Comput. 6(4), 1170 (2010)

    Article  Google Scholar 

  55. M. Ceriotti, G. Bussi, M. Parrinello, Phys. Rev. Lett. 102(2), 020601 (2009)

    Article  ADS  Google Scholar 

  56. S. Ganeshan, R. Ramírez, M.V. Fernández-Serra, Phys. Rev. B 87, 134207 (2013)

    Article  ADS  Google Scholar 

  57. M. Ceriotti, M. Parrinello, T.E. Markland, D.E. Manolopoulos, J. Chem. Phys. 133, 124104 (2010)

    Article  ADS  Google Scholar 

  58. M. Ceriotti, D.E. Manolopoulos, M. Parrinello, J. Chem. Phys. 134, 084104 (2011)

    Article  ADS  Google Scholar 

  59. B. Leimkuhler, C. Matthews, Applied Mathematics Research eXpress (2012)

  60. Y. Wu, H.L. Tepper, G.A. Voth, J. Chem. Phys. 124, 024503 (2006)

    Article  ADS  Google Scholar 

  61. R. Swindoll, J. Haile, J. Comput. Phys. 53(2), 289 (1984)

    Article  ADS  Google Scholar 

  62. O. Teleman, B. Jönsson, J. Comput. Chem. 7(1), 58 (1986)

    Article  Google Scholar 

  63. M.E. Tuckerman, G.J. Martyna, B.J. Berne, J. Chem. Phys. 93(2), 1287 (1990)

    Article  ADS  Google Scholar 

  64. M.E. Tuckerman, B.J. Berne, A. Rossi, J. Chem. Phys. 94(2), 1465 (1991)

    Article  ADS  Google Scholar 

  65. M.E. Tuckerman, B.J. Berne, G.J. Martyna, J. Chem. Phys. 94(10), 6811 (1991)

    Article  ADS  Google Scholar 

  66. M.E. Tuckerman, B.J. Berne, J. Chem. Phys. 95(11), 8362 (1991)

    Article  ADS  Google Scholar 

  67. P.Y. Chen, M.E. Tuckerman, J. Chem. Phys. 148(2), 024106 (2018)

    Article  ADS  Google Scholar 

  68. O. Marsalek, T.E. Markland, J. Chem. Phys. 144(5), 054112 (2016)

    Article  ADS  Google Scholar 

  69. N. Luehr, T.E. Markland, T.J. Martínez, J. Chem. Phys. 140(8), 084116 (2014)

    Article  ADS  Google Scholar 

  70. R.P. Steele, J. Phys. Chem. A 119(50), 12119 (2015)

    Article  Google Scholar 

  71. Z. Long, A.O. Atsango, J.A. Napoli, T.E. Markland, M.E. Tuckerman, J Phys Chem Lett 11(15), 6156 (2020)

    Article  Google Scholar 

  72. S.W. Rick, S.J. Stuart, B.J. Berne, J. Chem. Phys. 101(7), 6141 (1994)

    Article  ADS  Google Scholar 

  73. P. Zhang, N. Zhang, Y. Deng, D. Bluestein, J. Comput. Phys. 284, 668 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  74. J. Behler, M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007)

    Article  ADS  Google Scholar 

  75. T. Vlaar, B. Leimkuhler, arXiv:2106.10771 [cond-mat, physics:physics] (2021)

  76. C. Han, P. Zhang, D. Bluestein, G. Cong, Y. Deng, J. Comput. Phys. 427, 110053 (2021)

    Article  Google Scholar 

  77. E. Krieger, G. Vriend, J. Comput. Chem. 36(13), 996 (2015)

    Article  Google Scholar 

  78. Y. Liu, M.E. Tuckerman, J. Chem. Phys. 112(4), 1685 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

C.R.A.A. thanks the Federal University of Rio de Janeiro for a sabbatical leave and the New York University for a visiting scholar program membership. M.E.T. acknowledges funding from the National Science Foundation through grant no. CHE-1955381.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the conceptualization and writing of this manuscript.

Corresponding author

Correspondence to M. E. Tuckerman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu, C.R.A., Tuckerman, M.E. Multiple timescale molecular dynamics with very large time steps: avoidance of resonances. Eur. Phys. J. B 94, 231 (2021). https://doi.org/10.1140/epjb/s10051-021-00226-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00226-4

Navigation