Skip to main content
Log in

Heat distribution of relativistic Brownian motion

  • Regular Article – Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Understanding the statistical behavior of the heat in stochastic systems gives us insight into the thermodynamics of such systems. Using the recently proposed relativistic stochastic thermodynamics, we investigate the statistics of the heat of a Relativistic Ornstein–Uhlenbeck particle, comparing with the classical case. The results are exact through numerical integration of the Fokker–Planck of the joint distribution, and are validated by numerical simulations.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availibility Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The simulations described in the article were made with very standard software, some of it provided by PUC-Rio.]

References

  1. S. Carnot, Reflections on the Motive Power of Fire: And Other Papers on the Second Law of Thermodynamics (Courier Corporation, New York, 2012)

    Google Scholar 

  2. M.J.D. Oliveira, Rev. Bras. Ensino Fís. 42, e20200210 (2020). ((ISSN 1806-1117, 1806-9126))

    Article  Google Scholar 

  3. S. Ciliberto, Phys. Rev. X 7, 021051 (2017). https://doi.org/10.1103/PhysRevX.7.021051 ((publisher: American Physical Society))

    Article  Google Scholar 

  4. U. Seifert, Rep. Prog. Phys. 75, 126001 (2012)

    Article  ADS  Google Scholar 

  5. K. Sekimoto, Stochastic Energetics, vol. 799 (Springer, Berlin, 2010)

    Book  Google Scholar 

  6. P. V. Paraguassú, R. Aquino, W.A.M. Morgado, arXiv:2102.09115 [cond-mat]. http://arxiv.org/abs/2102.09115 (2021)

  7. P.V. Paraguassú, W.A.M. Morgado, J. Stat. Mech. 2021, 023205 (2021). https://doi.org/10.1088/1742-5468/abda25 ((ISSN 1742-5468 publisher: IOP Publishing))

    Article  Google Scholar 

  8. D. Gupta, D.A. Sivak, arXiv:2103.09358 [cond-mat]. http://arxiv.org/abs/2103.09358 (2021)

  9. H.C. Fogedby, J. Stat. Mech. 2020, 083208 (2020). https://doi.org/10.1088/1742-5468/aba7b2 ((ISSN 1742-5468 publisher: IOP Publishing))

    Article  MathSciNet  Google Scholar 

  10. K. Goswami, Phys. Rev. E 99, 012112 (2019). https://doi.org/10.1103/PhysRevE.99.012112 ((publisher: American Physical Society))

    Article  ADS  Google Scholar 

  11. A. Crisanti, A. Sarracino, M. Zannetti, Phys. Rev. E 95, 052138 (2017). https://doi.org/10.1103/PhysRevE.95.052138 ((publisher: American Physical Society))

    Article  ADS  Google Scholar 

  12. A. Ghosal, B.J. Cherayil, J. Stat. Mech. 2016, 043201 (2016). https://doi.org/10.1088/1742-5468/2016/04/043201 ((ISSN 1742-5468 publisher: IOP Publishing))

    Article  Google Scholar 

  13. M.L. Rosinberg, G. Tarjus, T. Munakata, EPL 113, 10007 (2016). https://doi.org/10.1209/0295-5075/113/10007 ((ISSN 0295-5075 publisher: IOP Publishing))

    Article  ADS  Google Scholar 

  14. K. Kim, C. Kwon, H. Park, Phys. Rev. E 90, 032117 (2014). https://doi.org/10.1103/PhysRevE.90.032117 ((ISSN 1539-3755, 1550-2376))

    Article  ADS  Google Scholar 

  15. Kuśmierz, J.M. Rubi, E. Gudowska-Nowak, J. Stat. Mech. 2014, P09002 (2014). https://doi.org/10.1088/1742-5468/2014/09/p09002 ((ISSN 1742-5468 publisher: IOP Publishing ))

  16. B. Saha, S. Mukherji, J. Stat. Mech. 2014, P08014 (2014). https://doi.org/10.1088/1742-5468/2014/08/P08014 ((ISSN 1742-5468))

    Article  Google Scholar 

  17. D. Chatterjee, B.J. Cherayil, J. Stat. Mech. 2011, P03010 (2011). https://doi.org/10.1088/1742-5468/2011/03/P03010 ((ISSN 1742-5468))

    Article  Google Scholar 

  18. D. Chatterjee, B.J. Cherayil, Phys. Rev. E 82, 051104 (2010). https://doi.org/10.1103/PhysRevE.82.051104 ((ISSN 1539-3755, 1550-2376))

    Article  ADS  MathSciNet  Google Scholar 

  19. H.C. Fogedby, A. Imparato, J. Phys. A Math. Theor. 42, 475004 (2009). https://doi.org/10.1088/1751-8113/42/47/475004 ((ISSN 1751-8121))

    Article  ADS  Google Scholar 

  20. A. Imparato, P. Jop, A. Petrosyan, S. Ciliberto, J. Stat. Mech. 2008, P10017 (2008). https://doi.org/10.1088/1742-5468/2008/10/P10017 ((ISSN 1742-5468))

    Article  Google Scholar 

  21. A. Imparato, L. Peliti, G. Pesce, G. Rusciano, A. Sasso, Phys. Rev. E 76, 050101 (2007). https://doi.org/10.1103/PhysRevE.76.050101 ((publisher: American Physical Society))

    Article  ADS  Google Scholar 

  22. S. Joubaud, N.B. Garnier, S. Ciliberto, J. Stat. Mech. 2007, P09018 (2007). https://doi.org/10.1088/1742-5468/2007/09/p09018 ((ISSN 1742-5468 publisher: IOP Publishing))

    Article  Google Scholar 

  23. P.S. Pal, S. Deffner, New J. Phys. 22, 073054 (2020). https://doi.org/10.1088/1367-2630/ab9ce6 ((ISSN 1367-2630))

    Article  ADS  MathSciNet  Google Scholar 

  24. E.T. Meyer, Nat. Astron. 2, 32–33 (2018)

    Article  ADS  Google Scholar 

  25. T. Koide, T. Kodama, Phys. Rev. E 83, 061111 (2011). https://doi.org/10.1103/PhysRevE.83.061111 ((ISSN 1539-3755, 1550-2376))

    Article  ADS  Google Scholar 

  26. Y. Akamatsu, T. Hatsuda, T. Hirano, Phys. Rev. C 79, 054907 (2009). https://doi.org/10.1103/PhysRevC.79.054907 ((ISSN 0556-2813, 1089-490X))

    Article  ADS  Google Scholar 

  27. A. Pototsky, F. Marchesoni, F.V. Kusmartsev, P. Hänggi, S.E. Savel’ev, Eur. Phys. J. B 85, 356 (2012). https://doi.org/10.1140/epjb/e2012-30716-7 ((ISSN 1434-6028, 1434-6036))

    Article  ADS  Google Scholar 

  28. A. Pototsky, F. Marchesoni, Phys. Rev. E 87, 032132 (2013). https://doi.org/10.1103/PhysRevE.87.032132 ((ISSN 1539-3755, 1550-2376))

    Article  ADS  Google Scholar 

  29. J. Dunkel, P. Hänggi, Phys. Rev. E 71, 016124 (2005). https://doi.org/10.1103/PhysRevE.71.016124 ((ISSN 1539-3755, 1550-2376))

    Article  ADS  Google Scholar 

  30. J. Dunkel, P. Hänggi, Phys. Rev. E 72, 036106 (2005). https://doi.org/10.1103/PhysRevE.72.036106 ((ISSN 1539-3755, 1550-2376))

    Article  ADS  MathSciNet  Google Scholar 

  31. J. Dunkel, P. Hänggi, Phys. Rep. 471, 1–73 (2009). ((ISSN 03701573))

    Article  ADS  MathSciNet  Google Scholar 

  32. B. Lindner, New J. Phys. 9, 136–136 (2007). https://doi.org/10.1088/1367-2630/9/5/136 ((ISSN 1367-2630))

    Article  ADS  Google Scholar 

  33. F. Debbasch, K. Mallick, J.P. Rivet, J. Stat. Phys. 88, 945–966 (1997). https://doi.org/10.1023/B:JOSS.0000015180.16261.53 ((ISSN 1572-9613))

    Article  ADS  Google Scholar 

  34. F. Debbasch, D. Espaze, V. Foulonneau, J.P. Rivet, Phys. A Stat. Mech. Appl. 391, 3797–3804 (2012). ((ISSN 03784371))

    Article  Google Scholar 

  35. B.U. Felderhof, Phys. Rev. E 86, 061103 (2012). https://doi.org/10.1103/PhysRevE.86.061103 ((ISSN 1539-3755, 1550-2376))

    Article  ADS  Google Scholar 

  36. S. Deffner, A. Saxena, Phys. Rev. E 92, 032137 (2015)

    Article  ADS  Google Scholar 

  37. H.P. Langtangen, A. Logg, Solving PDEs in Python: The FEniCS Tutorial I (Springer Nature, Basingstoke, 2016)

    Book  Google Scholar 

  38. H. Risken, Fokker–Planck Equation (Springer, Berlin, 1996), pp. 63–95

    Book  Google Scholar 

  39. L. Onsager, S. Machlup, Phys. Rev. 91, 1505 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  40. M.V. Moreno, D.G. Barci, Z.G. Arenas, Phys. Rev. E 99, 032125 (2019). https://doi.org/10.1103/PhysRevE.99.032125 ((ISSN 2470-0045, 2470-0053))

    Article  ADS  Google Scholar 

  41. H.S. Wio, Path Integrals for Stochastic Processes: An Introduction (World Scientific, Singapore, 2013)

    Book  Google Scholar 

  42. M. Chaichian, A. Demichev, Path Integrals in Physics: Volume I Stochastic Processes and Quantum Mechanics (CRC Press, Boca Raton, 2018)

    Book  Google Scholar 

  43. D. Cubero, J. Casado-Pascual, J. Dunkel, P. Talkner, P. Hänggi, Phys. Rev. Lett. 99, 170601 (2007). https://doi.org/10.1103/PhysRevLett.99.170601 ((ISSN 0031-9007, 1079-7114))

    Article  ADS  Google Scholar 

  44. P.G.D. Gennes, J. Stat. Phys. 119, 953–962 (2005). https://doi.org/10.1007/s10955-005-4650-4 ((ISSN 0022-4715, 1572-9613))

    Article  ADS  MathSciNet  Google Scholar 

  45. A. Logg, K.A. Mardal, G. Wells, Automated Solution of Differential Equations by the Finite Element Method: The Fenics Book, vol. 84 (Springer Science & Business Media, Berlin, 2012)

    Book  Google Scholar 

  46. M.L. Rosinberg, G. Tarjus, T. Munakata, Phys. Rev. E 95, 022123 (2017). https://doi.org/10.1103/PhysRevE.95.022123 ((ISSN 2470-0045, 2470-0053))

    Article  ADS  MathSciNet  Google Scholar 

  47. T. Munakata, M.L. Rosinberg, J. Stat. Mech. 2012, P05010 (2012). https://doi.org/10.1088/1742-5468/2012/05/P05010/meta ((ISSN 1742-5468 publisher: IOP Publishing))

    Article  Google Scholar 

  48. A.V. Plyukhin, Phys. Rev. E 88, 052115 (2013). https://doi.org/10.1103/PhysRevE.88.052115 ((ISSN 1539-3755, 1550-2376))

    Article  ADS  Google Scholar 

  49. S.M. Blinder, Phys. Rev. A 37, 973–976 (1988). https://doi.org/10.1103/PhysRevA.37.973 ((publisher: American Physical Society))

    Article  ADS  MathSciNet  Google Scholar 

  50. R.E. Crandall, J. Phys. A Math. Gen. 26, 3627–3648 (1993). https://doi.org/10.1088/0305-4470/26/14/024 ((ISSN 0305-4470 publisher: IOP Publishing))

    Article  ADS  Google Scholar 

  51. M.J. Goovaerts, A. Babcenco, J.T. Devreese, J. Math. Phys. 14, 554–559 (1973). https://doi.org/10.1063/1.1666355 ((ISSN 0022-2488 publisher: American Institute of Physics))

    Article  ADS  Google Scholar 

  52. S.V. Lawande, K.V. Bhagwat, Phys. Lett. A 131, 8–10 (1988). ((ISSN 0375-9601))

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Juan Leite, Luciano Defaveri, Igor Brandão, and Victor Alencar for useful discussions. This work is supported by the Brazilian agencies CAPES and CNPq. P.V.P. would like to thank CNPq for his current fellowship. This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

PVP (graduate student under supervision by WAMM) contributed with most of the ideas, calculations and writings (75%). WAMM contributed with ideas, discussions, and text corrections and adjustment (25%).

Corresponding author

Correspondence to Welles A. M. Morgado.

Appendix A: Path integral for ultra-relativistic case

Appendix A: Path integral for ultra-relativistic case

In Eq. 10 the conditional probability can be derived by means of the path integral technique. Which states that

$$\begin{aligned} P[p_t,t|p_0]= \int ^{p(t)=p_t}_{p(0)=p_0} Dp\; \mathrm{e}^{-{\mathcal {A}}[p(t)]} \end{aligned}$$
(A1)

where \({\mathcal {A}}[p(t)]\) is the stochastic action [40,41,42], in the Stratonovich prescription is given by

$$\begin{aligned} {\mathcal {A}}[p(t)]= \frac{1}{4D}\int _0^t\left( \dot{p}+\gamma c \frac{p}{|p|}\right) ^2\mathrm{d}\tau -\frac{\gamma c}{2} \int _0^t \frac{\partial }{\partial p} \frac{p}{|p|} \mathrm{d}\tau ,\nonumber \\ \end{aligned}$$
(A2)

where \(D=\gamma T\). By noticing that \(p/|p|=\text {sign}(p)=2H(p)-1\) and \(H'(p)=\delta (p)\), we can rewrite the action as

$$\begin{aligned} {\mathcal {A}}[p(t)]= \frac{1}{4D}\int _0^t\left( {\dot{p}}^2-\alpha \delta (p)\right) \mathrm{d}\tau +\frac{\gamma c}{2D}\left( \frac{\gamma c }{2} t+|p_t|-|p_0|\right) \nonumber \\ \end{aligned}$$
(A3)

where, \(\alpha =4D\gamma c\). The conditional probability can be rewritten as

$$\begin{aligned} P[p_t,t|p_0] = \mathrm{e}^{-\frac{\gamma c}{2D}\left( \frac{\gamma c }{2} t+|p_t|-|p_0|\right) }K[p_t,t|p_0], \end{aligned}$$
(A4)

where \(K[p_t,t|p_0]\) will be the path integral

$$\begin{aligned} K[p_t,t|p_0]= \int ^{p(t)=p_t}_{p(0)=p_0} Dp \exp \left( -\frac{1}{4D}\int _0^t\left( {\dot{p}}^2-\alpha \delta (p)\right) \mathrm{d}\tau \right) \nonumber \\ \end{aligned}$$
(A5)

which has the same structure of a quantum mechanical propagator of a particle with a delta potential [49,50,51,52]. Thus, following [52] we review the derivation of this path integral.

To solve Eq. (A5) we expand the potential, obtaining

$$\begin{aligned} K[p_t,t|p_0] = K_0[p_t,t|p_0]+K_1[p_t,t|p_0] \end{aligned}$$
(A6)

where

$$\begin{aligned}&K_0[p_t,t|p_0] = \int ^{p(t)=p_t}_{p(0)=p_0} Dp \mathrm{e}^{-\frac{1}{4D}\int {\dot{p}}^2\mathrm{d}\tau }\nonumber \\&\quad = \frac{1}{\sqrt{4\pi D t}}\mathrm{e}^{-\frac{(p_t-p_0)^2}{4Dt}}, \end{aligned}$$
(A7)
$$\begin{aligned}&K_1[p_t,t|p_0] = \sum _{n=1}^{\infty } \left( \frac{-1}{4D}\right) ^n\frac{(-\alpha )^n}{n!}\int Dp\; \mathrm{e}^{-\frac{1}{4D}\int {\dot{p}}^2\mathrm{d}\tau }\nonumber \\&\quad \times \left( \int _0^t\delta (p)d\tau \right) ^n. \end{aligned}$$
(A8)

Therefore, we only have to solve \(K_1\). To do this, note that

$$\begin{aligned}&\left( \int _0^t\delta (p)d\tau \right) ^n \nonumber \\&\quad = \int _0^t \mathrm{d}t_n \int _0^t \mathrm{d}t_{n-1} \dots \int _0^t \mathrm{d}t_2 \int _0^t \mathrm{d}t_1 \prod _{k=1}^n\delta (p(t_k))\nonumber \\ \end{aligned}$$
(A9)
$$\begin{aligned}&\quad = n! \int _0^t \mathrm{d}t_n \int _0^{t_n} \mathrm{d}t_{n-1}\dots \int _0^{t_2} \mathrm{d}t_1 \prod _{k=1}^n\delta (p(t_k))\nonumber \\ \end{aligned}$$
(A10)

where in the second line, we just reordered the time. The path integral in K is a Wiener path integral that describes a Markovian stochastic process, thus we have the property

$$\begin{aligned}&K_0[p_t,t|p_0]\nonumber \\&\quad = K_0[p_t,t|p_n,t_n] K_0[p_n,t_n|p_{n-1},t_{n-1}] \dots K_0[p_1,t_1|p_0,0],\nonumber \\ \end{aligned}$$
(A11)

therefore, in \(K_1\) we have the expression

$$\begin{aligned}&\int \mathrm{d}p_n \int \mathrm{d}p_{n-1} \dots \int \mathrm{d}p_1 K_0[p_t,t|p_n,t_n] \delta (p_n)\nonumber \\&\quad \prod _{k=2}^{n} K_0[p_k,t_k|p_{k-1}t_{k-1}]K_0[p_1,t_1|p_0,0]\delta (p_k)\delta (p_1)\nonumber \\ \end{aligned}$$
(A12)
$$\begin{aligned}&\quad =K_0[p_t,t|0,t_n] \prod _{k=2}^{n} K_0[0,t_k|0,t_{k-1}]K_0[0,t_1|p_0,0].\nonumber \\ \end{aligned}$$
(A13)

Thus, we have

$$\begin{aligned} K_1= & {} \sum _{n=1}^{\infty } \left( \frac{\alpha }{4D}\right) ^n \int _0^t \mathrm{d}t_n \int _0^{t_n} \mathrm{d}t_{n-1}\dots \nonumber \\&\times \int _0^{t_2} \mathrm{d}t_1 K_0[p_t,t|0,t_n]\nonumber \\&\times \prod _{k=2}^{n} K_0[0,t_k|0,t_{k-1}]K_0[0,t_1|p_0,0]. \end{aligned}$$
(A14)

Note that we have convolutions between the propagators. Then, by making the Laplace’s transform

$$\begin{aligned} {\tilde{K}}_1 = \int _0^\infty \mathrm{e}^{-st} K_1[p_t,t|p_0] \mathrm{d}t, \end{aligned}$$
(A15)

we can get rid of the time integrals, giving

$$\begin{aligned} {\tilde{K}}_1 = \sum _{n=1}^{\infty } \left( \frac{\alpha }{4D}\right) ^n {\tilde{K}}(p_t,s){\tilde{K}}(0,s)^{n-1}{\tilde{K}}(p_0,s) \end{aligned}$$
(A16)

where

$$\begin{aligned} {\tilde{K}}(p,s) = \int _0^\infty \mathrm{e}^{-st} \frac{\mathrm{e}^{-\frac{p^2}{4Dt}}}{\sqrt{4\pi D t }}\mathrm{d}t =\exp \left( {-|p|\sqrt{\frac{s}{D}}}\right) \sqrt{\frac{1}{4 D s}},\nonumber \\ \end{aligned}$$
(A17)

then

$$\begin{aligned} {\tilde{K}}_1= & {} \sum _{n=1}^{\infty } \left( \frac{\gamma c}{\sqrt{4 D}}\right) ^n \frac{1}{\sqrt{4D}} \exp \left( {-(|p_t|+|p_0|)\sqrt{\frac{s}{D}}}\right) \nonumber \\&\times \left[ \sqrt{\frac{1}{s}}\right] ^{n+1}. \end{aligned}$$
(A18)

The above sum is solved exactly, since \(\sum _{n=1}^\infty (a)^n = a/(a-1)\), and then we can use the inverse Laplace transform to find the desired \(K_1\).

$$\begin{aligned} K_1[p_t,t|p_0] = \frac{ c \gamma }{\sqrt{4D} } {\mathcal {L}}^{-1}\left[ \frac{\exp \left( {-(|p_t|+|p_0|)\sqrt{\frac{s}{D}}}\right) }{\sqrt{ s}(\sqrt{4Ds}-\gamma c)}\right] ,\nonumber \\ \end{aligned}$$
(A19)

where \({\mathcal {L}}^{-1}\) is the inverse Laplace transform. Note that

$$\begin{aligned} {\mathcal {L}}^{-1}\left[ \frac{\mathrm{e}^{-a\sqrt{s}}}{\sqrt{s}(\sqrt{s}+b)}\right] = \mathrm{e}^{ab}\mathrm{e}^{b^2t}\text {erfc}\left( b\sqrt{t}+\frac{a}{2\sqrt{2}}\right) .\qquad \end{aligned}$$
(A20)

Thus, using the above formula, \(K_1\) becomes

$$\begin{aligned}&K_1[p_t,t|p_0] \nonumber \\&\quad = \frac{c\gamma }{4D}\mathrm{e}^{\frac{\gamma ^2c^2}{4D}t}\exp \left( -\frac{\gamma c}{2D}(|p_t|+|p_0|)\right) \text {erfc}\nonumber \\&\qquad \times \left[ \frac{1}{\sqrt{4D}}\left( \frac{|p_t|+|p_0|}{\sqrt{2}}-\gamma c \sqrt{t}\right) \right] . \end{aligned}$$
(A21)

Therefore, we have

$$\begin{aligned}&K[p_t,t|p_0] \nonumber \\&\quad = \frac{1}{\sqrt{4\pi D t}}\mathrm{e}^{-\frac{(p_t-p_0)^2}{4Dt}} +\frac{c\gamma }{4D}\mathrm{e}^{\frac{\gamma ^2c^2}{4D}t}\mathrm{e}^{\left( -\frac{\gamma c}{2D}(|p_t|+|p_0|)\right) }\text {erfc}\nonumber \\&\qquad \times \left[ \frac{1}{\sqrt{4D}}\left( \frac{|p_t|+|p_0|}{\sqrt{2}}-\gamma c \sqrt{t}\right) \right] , \end{aligned}$$
(A22)

and finally the conditional probability

$$\begin{aligned}&P[p_t,t|p_0 ] \nonumber \\&\quad = \frac{1}{\sqrt{4\pi D t}}\mathrm{e}^{-\frac{(p_t-p_0)^2}{4Dt}}\mathrm{e}^{-\frac{c \gamma }{2 D}\left( -| p_0| +| p_t| +\frac{c \gamma t}{2}\right) } \nonumber \\&\qquad + \frac{c\gamma }{4D}\mathrm{e}^{-\frac{c\gamma }{D}|p_t|}\text {erfc}\left[ \frac{1}{\sqrt{4D}}\left( \frac{|p_t|+|p_0|}{\sqrt{2}}-\gamma c \sqrt{t}\right) \right] .\nonumber \\ \end{aligned}$$
(A23)

Note that this distribution recovers the equilibrium one for \(t\rightarrow \infty \), that is

$$\begin{aligned} \lim _{t\rightarrow \infty }P[p_t,t|p_0] = \frac{c\gamma }{2D}\mathrm{e}^{-\frac{c\gamma }{D}|p_t|}= \frac{c\gamma }{2D}\mathrm{e}^{-\frac{c}{T}|p_t|},\qquad \quad \end{aligned}$$
(A24)

as it should be.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paraguassú, P.V., Morgado, W.A.M. Heat distribution of relativistic Brownian motion. Eur. Phys. J. B 94, 197 (2021). https://doi.org/10.1140/epjb/s10051-021-00214-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00214-8

Navigation