Skip to main content
Log in

Nematic-like band splitting and crystal field splitting in newly discovered hybrid 12442 iron-based superconductors

  • Regular Article – Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We present theoretical results of crystal field splitting and nematic-like band splitting based on density functional theory first principles electronic structure and Wannier fitted tight binding calculations on the newly discovered quasi two-dimensional \({\mathrm{ACa_2Fe_4As_4F_2}}\) (where A = K, Rb, Cs) i.e., 12442 iron-based superconductors. The orbital selective anisotropy of band structures as well as Fermi surfaces are discussed through electronic structure calculations. The degeneracy of \(d_{xz}\) and \(d_{yz}\) orbitals are lifted in 12442 compounds due to the reduction of local symmetry \(D_{2d}\) to \(C_{2v}\) of Fe-site. This degeneracy lifting of \(d_{xz}\) and \(d_{yz}\) cause band reconstruction which in turn induce emergence of nematic-like splitting of some bands in these compounds. This splitting is maximum at the electron bands near the Brillouin zone corner. The details of band reconstruction and band splittings are explored using relativistic pseudopotential including spin orbit coupling. To verify the degeneracy lifting of \(d_{xz/yz}\) level in 12442 compounds, crystal field splitting is calculated with tight binding fitting using maximally localized Wannier functions. In contrary to its parent 1111 and 122 compounds, the degeneracy lifting of \(d_{xz/yz}\) may be responsible for intrinsic band splitting in tetragonal phase of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008)

    Google Scholar 

  2. M. Yi, D. Lu, R. Yu, S. Riggs, J.-H. Chu, B. Lv, Z. Liu, M. Lu, Y.-T. Cui, M. Hashimoto, S.-K. Mo, Z. Hussain, C. Chu, I. Fisher, Q. Si, Z.-X. Shen, Phys. Rev. Lett. 110, 067003 067003 (2013)

    ADS  Google Scholar 

  3. R. Yu, Q. Si, Phys. Rev. Lett. 110, 146402 (2013)

    ADS  Google Scholar 

  4. F. Kruger, S. Kumar, J. Zaanen, J. Brink, Phys. Rev. B 79, 054504 054504 (2009)

    ADS  Google Scholar 

  5. C.-C. Lee, W.-G. Yin, W. Ku, Phys. Rev. Lett. 103, 267001 (2009)

    ADS  Google Scholar 

  6. R.M. Fernandes, A.V. Chubukov, J. Schmalian, Nat. Phys. 10, 97 (2014)

    Google Scholar 

  7. S. Kasahara, H.J. Shi, K. Hashimoto, S. Tonegawa, Y. Mizukami, T. Shibauchi, K. Sugimoto, T. Fukuda, T. Terashima, A.H. Nevidomskyy, Y. Matsuda, Nature 486, 382–385 (2012)

    ADS  Google Scholar 

  8. Y. Gu, Z. Liu, T. Xie, W. Zhang, D. Gong, D. Hu, X. Ma, C. Li, L. Zhao, L. Lin, Z. Xu, G. Tan, G. Chen, Z.Y. Meng, Y.-F. Yang, H. Luo, S. Li, Phys. Rev. Lett. 119, 157001 (2017)

    ADS  Google Scholar 

  9. Z. Liu, Y. Gu, W. Hong, T. Xie, D. Gong, X. Ma, J. Liu, C. Hu, L. Zhao, X. Zhou, R.M. Fernandes, Y.-F. Yang, H. Luo, S. Li, Phys. Rev. Res. 1, 033154 (2019)

    Google Scholar 

  10. C. Hess, H. Grafe, A. Kondrat, G. Lang, F. Hammerath, L. Wang, R. Klingeler, G. Behr, B. Büchner, Phys. Status Solidi B 254, 1600214 (2017)

    ADS  Google Scholar 

  11. Y. Gallais, I. Paul, C. R. Physique 17, 113–139 (2016)

    ADS  Google Scholar 

  12. R.M. Fernandes, A.J. Millis, PRL 111, 127001 (2013)

    ADS  Google Scholar 

  13. J. Li, P.J. Pereira, J. Yuan, Y.-Y. Lv, M.-P. Jiang, D. Lu, Z.-Q. Lin, Y.-J. Liu, J.-F. Wang, L. Li, X. Ke, G.V. Tendeloo, M.-Y. Li, H.-L. Feng, T. Hatano, H.-B. Wang, P.-H. Wu, K. Yamaura, E.T. Muromachi, J. Vanacken, L.F. Chibotaru, V.V. Moshchalkov, Nat. Commun. 8, 1880 (2017)

    ADS  Google Scholar 

  14. T. Shimojima, K. Ishizaka, Y. Ishida, N. Katayama, K. Ohgushi, T. Kiss, M. Okawa, T. Togashi, X.-Y. Wang, C.-T. Chen, S. Watanabe, R. Kadota, T. Oguchi, A. Chainani, S. Shin, Phys. Rev. Lett. 104, 057002 (2010)

    ADS  Google Scholar 

  15. D.C. Johnston, Adv. Phys. 59, 803 (2010)

    ADS  Google Scholar 

  16. J.-H. Chu, J.G. Analytis, K. De Greve, P.L. McMahon, Z. Islam, Y. Yamamoto, I.R. Fisher, Science 329, 824 (2010)

    ADS  Google Scholar 

  17. M. Fu, D.A. Torchetti, T. Imai, F.L. Ning, J.-Q. Yan, A.S. Sefat, Phys. Rev. Lett. 109, 247001 (2012)

    ADS  Google Scholar 

  18. F.C. Hsu, J.Y. Luo, K.W. Yeh, T.K. Chen, T.W. Huang, P.M. Wu, Y.C. Lee, Y.L. Huang, Y.Y. Chu, D.C. Yan et al., Proc. Natl. Acad. Sci. 105, 14262 (2008)

    ADS  Google Scholar 

  19. J.H. Tapp, Z. Tang, B. Lv, K. Sasmal, B. Lorenz, P.C.W. Chu, A.M. Guloy, Phys. Rev. B 78, 060505 (2008)

    ADS  Google Scholar 

  20. N. Katayama, K. Kudo, S. Onari, T. Mizukami, K. Sugawara, Y. Sugiyama, Y. Kitahama, K. Iba, K. Fujimura, N. Nishimoto et al., J. Phys. Soc. Jpn. 82, 123702 (2013)

    ADS  Google Scholar 

  21. A. Iyo, K. Kawashima, T. Kinjo, T. Nishio, S. Ishida, H. Fujihisa, Y. Gotoh, K. Kihou, H. Eisaki, Yoshiyuki Yoshida, J. Am. Chem. Soc. 138, 3410–3415 (2016)

    Google Scholar 

  22. K. Kawashima, T. Kinjo, T. Nishio, S. Ishida, H. Fujihisa, Y. Gotoh, K. Kihou, H. Eisaki, Y. Yoshida, A. Iyo, J. Phys. Soc. Jpn. 85, 064710 (2016)

    ADS  Google Scholar 

  23. Z.-C. Wang, C.-Y. He, S.-Q. Wu, Z.-T. Tang, Y. Liu, A. Ablimit, C.-M. Feng, G.-H. Cao, J. Am. Chem. Soc. 138, 7856–7859 (2016)

    Google Scholar 

  24. T. Wang, J. Chu, H. Jin, J. Feng, L. Wang, Y. Song, C. Zhang, X. Xu, W. Li, Z. Li, T. Hu, D. Jiang, W. Peng, X. Liu, G. Mu, J. Phys. Chem. C 123, 13925–13929 (2019)

    Google Scholar 

  25. Z. Wang, C. He, Z. Tang, S. Wu, G. Cao, Sci. China Mater. 60(1), 83–89 (2017)

    Google Scholar 

  26. W. Hong, L. Song, B. Liu, Z. Li, Z. Zeng, Y. Li, D. Wu, Q. Sui, T. Xie, S. Danilkin, H. Ghosh, A. Ghosh, J. Hu, L. Zhao, X. Zhou, X. Qiu, Shiliang Li, H. Luo, Phys. Rev. Lett. 120(13), 137001 137001 (2020)

    Google Scholar 

  27. D.T. Adroja, S.J. Blundell, F. Lang, H. Luo, Z.-C. Wang, G.-H. Cao, J. Phys. Condens. Matter 32, 435603 (2020). ((6pp))

    ADS  Google Scholar 

  28. A. Ghosh, S. Ghosh, H. Ghosh, Comput. Mater. Sci. 183, 109802 (2020)

    Google Scholar 

  29. D. Wu, W. Hong, C. Dong, X. Wu, Q. Sui, J. Huang, Q. Gao, C. Li, C. Song, H. Luo, C. Yin, Y. Xu, X. Luo, Y. Cai, J. Jia, Q. Wang, Y. Huang, G. Liu, S. Zhang, F. Zhang, F. Yang, Z. Wang, Q. Peng, Z. Xu, X. Qiu, S. Li, H. Luo, J. Hu, L. Zhao, X.J. Zhou, Phys. Rev. B 101, 224508 (2020)

    ADS  Google Scholar 

  30. M. Smidman, F.K.K. Kirschner, D.T. Adroja, A.D. Hillier, F. Lang, Z.C. Wang, G.H. Cao, S.J. Blundell, Phys. Rev. B 97, 060509(R) (2018)

    ADS  Google Scholar 

  31. F.K.K. Kirschner, D.T. Adroja, Z.-C. Wang, F. Lang, M. Smidman, P.J. Baker, G.-H. Cao, S.J. Blundell, Phys. Rev. B 97, 060506(R) (2018)

    ADS  Google Scholar 

  32. D.T. Adroja, F.K.K. Kirschner, F. Lang, M. Smidman, A.D. Hillier, Z.-Ch. Wang, G.-H. Cao, G.B.G. Stenning, S.J. Blundell, J. Phys. Soc. Jpn. 87, 124705 (2018)

    ADS  Google Scholar 

  33. T. Terashima, Y. Matsushita, H. Yamase, N. Kikugawa, H. Abe, M. Imai, S. Uji, S. Ishida, H. Eisaki, A. Iyo, K. Kihou, C.-H. Lee, T. Wang, G. Mu, Phys. Rev. B 102, 054511 (2020)

    ADS  Google Scholar 

  34. G. Wang, Z. Wang, X. Shi, EPL 116, 37003 (2016)

    ADS  Google Scholar 

  35. C.-C. Chen, J. Maciejko, A.P. Sorini, B. Moritz, R.R.P. Singh, T.P. Devereaux, Phys. Rev. B 82, 100504 (2010)

    ADS  Google Scholar 

  36. Y. Yamakawa, S. Onari, H. Kontani, Phys. Rev. X 6, 021032 (2016)

    Google Scholar 

  37. S. Avci, O. Chmaissem, D.Y. Chung, S. Rosenkranz, E.A. Goremychkin, J.P. Castellan, I.S. Todorov, J.A. Schlueter, H. Claus, A. Daoud-Aladine, D.D. Khalyavin, M.G. Kanatzidis, R. Osborn, Phys. Rev. B 85, 184507 (2012)

    ADS  Google Scholar 

  38. A. Thaler, N. Ni, A. Kracher, J.Q. Yan, S.L. Bud’ko, P.C. Canfield, Phys. Rev. B 82, 014534 (2010)

    ADS  Google Scholar 

  39. N. Ni, A. Thaler, A. Kracher, J.Q. Yan, S.L. Bud’ko, P.C. Canfield, Phys. Rev. B 80, 024511 (2009)

    ADS  Google Scholar 

  40. P.C. Canfield, S.L. Bud’ko, Ann. Rev. Condens. Matter Phys. 1, 27–50 (2010)

    ADS  Google Scholar 

  41. C.L. Cruz, Q. Huang, J.W. Lynn, J. Li, W. Ratcliff, J.L. Zarestky, H.A. Mook, G.F. Chen, J.L. Luo, N.L. Wang, P. Dai, Nature 453, 899–902 (2008)

    ADS  Google Scholar 

  42. D.R. Parker, M.J.P. Smith, T. Lancaster, A.J. Steele, I. Franke, P.J. Baker, F.L. Pratt, M.J. Pitcher, S.J. Blundell, S.J. Clarke, Phys. Rev. Lett. 104, 057007 (2010)

    ADS  Google Scholar 

  43. J.-H. Chu, J.G. Analytis, K.D. Greve, P.L. McMahon, Z. Islam, Y. Yamamoto, I.R. Fisher, Science 329(5993), 824–826 (2010)

    ADS  Google Scholar 

  44. A. Dusza, A. Lucarelli, F. Pfuner, J.-H. Chu, I.R. Fisher, L. Degiorgi, Europhys. Lett. 93, 37002 (2011)

    ADS  Google Scholar 

  45. M. Nakajima, T. Liang, S. Ishida, Y. Tomioka, K. Kihou, C.H. Lee, A. Iyo, H. Eisaki, T. Kakeshita, T. Ito, S. Uchida, PNAS 108(30), 12238–12242 (2011)

    ADS  Google Scholar 

  46. T.-M. Chuang, M.P. Allan, J. Lee, Y. Xie, N. Ni, S.L. Bud’ko, G.S. Boebinger, P.C. Canfield, J.C. Davis, Science 327, 5962 (2010). (181–184)

    Google Scholar 

  47. X. Lu, J.T. Park, R. Zhang, H. Luo, A.H. Nevidomskyy, Q. Si, P. Dai, Science 345, 657 (2014)

    ADS  Google Scholar 

  48. R.M. Fernandes, J. Schmalian, Supercond. Sci. Technol. 25, 084005 (2012)

    ADS  Google Scholar 

  49. G. Wang, Z. Wang, X. Shi, EPL 116(3), 37003 (2016)

    ADS  Google Scholar 

  50. J. Luo, C. Wang, Z. Wang, Q. Guo, J. Yang, R. Zhou, K. Matano, T. Oguchi, Z. Ren, G. Cao, G.-Q. Zheng, Chinese Phys. B (2020). https://doi.org/10.1088/1674-1056/ab892d

    Article  Google Scholar 

  51. F. Krüger, S. Kumar, J. Zaanen, J. Brink, Phys. Rev. B 79, 054504 (2009)

    ADS  Google Scholar 

  52. L. Medici, Spring. Ser. Mater. Sci. 211, 409–441 (2015)

    Google Scholar 

  53. P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009)

    Google Scholar 

  54. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  55. M. Kawamura, Comp. Phys. Commun. 239, 197 (2019)

    ADS  Google Scholar 

  56. A.A. Mostofi, J.R. Yates, G. Pizzi, Y.S. Lee, I. Souza, D. Vanderbilt, N. Marzari, Comput. Phys. Commun. 185, 2309 (2014)

    ADS  Google Scholar 

  57. J.D. Hunter, Comput. Sci. Eng. 9(3), 90–95 (2007)

    Google Scholar 

  58. B. Harrington et al. (2004–2005). Inkscape. http://www.inkscape.org/

  59. K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272–1276 (2011)

    Google Scholar 

  60. T.-M. Chuang, M.P. Allan, J. Lee, Y. Xie, N. Ni, S.L. Bud’ko, G.S. Boebinger, P.C. Canfield, J.C. Davis, Science 327, 181 (2010)

    ADS  Google Scholar 

  61. L.W. Harriger, H.Q. Luo, M.S. Liu, C. Frost, J.P. Hu, M.R. Norman, P. Dai, Phys. Rev. B 84, 054544 (2011)

    ADS  Google Scholar 

  62. M. Yi, H. Pfau, Y. Zhang, Y. He, H. Wu, T. Chen, Z.R. Ye, M. Hashimoto, R. Yu, Q. Si, D.-H. Lee, P. Dai, Z.-X. Shen, D.H. Lu, R.J. Birgeneau, Phys. Rev. X 9, 041049 (2019)

    Google Scholar 

  63. M.D. Watson, T.K. Kim, L.C. Rhodes, M. Eschrig, M. Hoesch, A.A. Haghighirad, A.I. Coldea, Phys. Rev. B 94, 201107(R) (2016)

    ADS  Google Scholar 

  64. S.V. Borisenko, D.V. Evtushinsky, Z.-H. Liu, I. Morozov, R. Kappenberger, S. Wurmehl, B. Büchner, A.N. Yaresko, T.K. Kim, M. Hoesch, T. Wolf, N.D. Zhigadlo, Nat. Phys. 12, 311–317 (2016)

    Google Scholar 

  65. A. Fedorov, A. Yaresko, T.K. Kim, Y. Kushnirenko, E. Haubold, T. Wolf, M. Hoesch, A. Grüneis, B. Büchner, S.V. Borisenko, Sci. Rep. 6, 36834 (2016). https://doi.org/10.1038/srep36834

    Article  ADS  Google Scholar 

  66. I. Souza, N. Marzari, D. Vanderbilt, Phys. Rev. B 65, 035109 (2002)

    ADS  Google Scholar 

  67. A.A. Mostofi, J.R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, N. Marzari, Comput. Phys. Commun. 178, 685 (2008)

    ADS  Google Scholar 

  68. J. Kunes, R. Arita, P. Wissgott, A. Toschi, H. Ikeda, K. Held, Comput. Phys. Commun. 181, 1888 (2010)

    ADS  Google Scholar 

  69. N. Marzari, D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)

    ADS  Google Scholar 

  70. F. Hardy, A.E. Bohmer, D. Aoki, P. Burger, T. Wolf, P. Schweiss, R. Heid, P. Adelmann, Y.X. Yao, G. Kotliar, J. Schmalian, C. Meingast, Phys. Rev. Lett. 111, 027002 (2013)

    ADS  Google Scholar 

Download references

Acknowledgements

AG and SG acknowledge the HBNI, RRCAT for financial support and encouragements. We thank Computer Centre, RRCAT for providing computational facilities. HG acknowledges discussion with H. Luo.

Author information

Authors and Affiliations

Authors

Contributions

All the electronic structure calculations in the paper are carried out by A. Ghosh. The crystal field splitting calculations are performed by S. Ghosh. The problem is formulated and conceptualized by H. Ghosh and A. Ghosh. The manuscript is written by A. Ghosh and reformulated by H. Ghosh. Overall guidance was provided by H. Ghosh. All the results were discussed among all the authors.

Corresponding author

Correspondence to Haranath Ghosh.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Ghosh, S. & Ghosh, H. Nematic-like band splitting and crystal field splitting in newly discovered hybrid 12442 iron-based superconductors. Eur. Phys. J. B 94, 201 (2021). https://doi.org/10.1140/epjb/s10051-021-00213-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00213-9

Navigation