Skip to main content
Log in

Characterization of spectral features of cavity modes in one-dimensional graphene-based photonic crystal structures

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this study, a numerical approach based on the transfer-matrix method (TMM) is employed to investigate, the optical features of an ultra-high-quality factor (Q-factor). The cavity is formed by incorporating a defect layer in a one-dimensional graphene photonic crystal (1D-GPC) structure. The cavity modes are identified, and the dependency of their spectral characteristics on the opto-geometrical parameters of the structure and the chemical potential (\(\mu _{\mathrm{C}})\) of graphene are investigated in detail. Our simulation results indicate that a tunable ultra-high Q-factor is attainable with the proposed cavity device. It is shown that the eigenfrequencies of the cavity modes vary in similar way versus the considered parameters. While, their Q-factors exhibit some differences in their changes with the thicknesses of the material layers. We have also noticed that the proposed cavity exhibits a cavity mode whose Q-factor increases exponentially with the number of layers in the distributed Bragg reflectors and with the graphene chemical potential. The observed tunable features of such kind of high Q-factor cavity make it an ideal candidate for the realization of ultrasmall tunable narrowband filters, sensing devices, and low-threshold lasers.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment:Data sharing not applicable to this article as no datasets were generated or analysed during the current study.]

References

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

    Article  ADS  Google Scholar 

  2. S. John, Phys. Rev. Lett. 58, 2486–2489 (1987)

    Article  ADS  Google Scholar 

  3. Y. Dong, X. Zhang, Phys. Lett. A 359, 542 (2006)

    Article  ADS  Google Scholar 

  4. T.F. Khaalkhali, B. Rezaei, M. Kalafi, Opt. Commun. 284, 3315 (2011)

    Article  ADS  Google Scholar 

  5. J. Mizuguchi, Y. Tanaka, S. Tamura, M. Notomi, Phys. Rev. B 67, 075109 (2003)

    Article  ADS  Google Scholar 

  6. J.D. Joannopoulos, P.R. Villeneuve, S. Fan, Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997)

    Article  ADS  Google Scholar 

  7. E. Yablonovitch, T.J. Gmitter, R.D. Meade, A.M. Rappe, K.D. Brommer, J.D. Joannopoulos, Phys. Rev. Lett. 67, 3380–3383 (1991)

    Article  ADS  Google Scholar 

  8. Y.K. Ha, Y.C. Yang, J.E. Kim, H.Y. Park, Appl. Phys. Lett. 79, 15–17 (2001)

    Article  ADS  Google Scholar 

  9. M. Loncar, B.G. Lee, L. Diehl, M. Belkin, F. Capasso, M. Giovannini, J. Faist, E. Gini, Appl. Phys. Lett. 15, 4499–4514 (2007)

    Google Scholar 

  10. M.S. Reddy, R. Vijaya, I.D. Rukhlenko, M. Premaratne, Opt. Express 22, 6229 (2014)

    Article  ADS  Google Scholar 

  11. K. Srinivasan, P. Barclay, O. Painter, J. Chen, A. Cho, G. Gmach, Appl. Phys. Lett. 83, 1915 (2003)

    Article  ADS  Google Scholar 

  12. J. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulavoskii, T. Reinecke, A. Forche, Nature 432, 075123 (2004)

    Article  Google Scholar 

  13. M. Tokushima, H. Kosaka, A. Tomita, H. Yamada, Appl. Phys. Lett. 76, 952 (2000)

    Article  ADS  Google Scholar 

  14. Y. Lu, J. Zheng, Appl. Phys. Lett. 74, 123 (1999)

    Article  ADS  Google Scholar 

  15. V.A. Tolmachev, V.A. Melnikov, A.V. Baldycheva, K. Berwick, T.S. Perova, Prog. Electromagn. Res. 122, 293–309 (2012)

    Article  Google Scholar 

  16. C.Z. Li, S.B. Liu, X.K. Kong, B. Bian, X.Y. Zhang, Appl. Opt. 50, 2370 (2011)

    Article  ADS  Google Scholar 

  17. Y.S. Kim, S.Y. Lin, H.Y. Wu, R.P. Pan, J. Appl. Phys. 109(12), 123111 (2011)

    Article  ADS  Google Scholar 

  18. J.H. Wülbern, A. Petrov, M. Eich, Opt. Express 17(1), 304–313 (2009)

    Article  ADS  Google Scholar 

  19. S. Razi, F. Ghasemi, Laser Phys. 29, 046204 (2019)

    Article  ADS  Google Scholar 

  20. S. Razi, F. Ghasemi, Opt. Quant. Electron. 51, 104 (2019)

    Article  Google Scholar 

  21. Hussein A. Elsayed, Mater. Chem. Phys. 216, 191–196 (2018)

    Article  Google Scholar 

  22. S.K. Srivastava, A. Aghajamali, J. Supercond. Novel Magn. 29, 1423–1431 (2016)

    Article  Google Scholar 

  23. H. Rahimi, Opt. Mater. 57, 264–271 (2016)

    Article  ADS  Google Scholar 

  24. P. Singh, K.B. Thapa, S.K. Singh, A.K. Gupta, Plasmonics 15, 1845–1854 (2020)

    Article  Google Scholar 

  25. B. Liu, S.G. Johnson, J.D. Joannopoulos, L. Lu, J. Opt. 20, 044005 (2018)

    Article  ADS  Google Scholar 

  26. A.H. Aly, D. Mohamed, H.A. Elsayed, D. Vigneswaran, J. Supercond. Nov. Magn. 31(11), 3453–3457 (2018)

    Article  Google Scholar 

  27. C. Nayak, C.H. Costa, A. Aghajamali, IEEE Trans. Plasma Sci. 47(4), 1726–1733 (2019)

    Article  ADS  Google Scholar 

  28. Y. Trabelsi, N. Ben Ali, W. Belhadj, M. Kanzari, J. Supercond. Nov. Magn. 32, 3541–3547 (2019)

  29. C. Nayak, C.H. Costa, K.V. Phani Kumar, IEEE Trans. Plasma Sci. 48(6), 2097–2105 (2020)

  30. C. Nayak, A. Aghajamali, M. Solaimani, J.K. Rakshit, D. Panigrahy, K.V.P. Kumar, B. Ramakrishna, Optik 222, 165290 (2020)

    Article  ADS  Google Scholar 

  31. G.W. Hanson, J. Appl. Phys. 104, 084314 (2008)

    Article  ADS  Google Scholar 

  32. B. Wang, X. Zhang, F.J. García-Vidal, X. Yuan, J. Teng, Phys. Rev. Lett. 109, 073901 (2012)

    Article  ADS  Google Scholar 

  33. L.A. Falkovsky, S.S. Pershoguba, Phys. Rev. B 76, 153410 (2007)

    Article  ADS  Google Scholar 

  34. C.S.R. Kaipa, A.B. Yakovlev, G.W. Hanson, Y.R. Padooru, F. Medina, F. Mesa, Phys. Rev. B 85, 245407 (2012)

    Article  ADS  Google Scholar 

  35. T. Stauber, N.M.R. Peres, A.K. Geim, Phys. Rev. B 78, 085432 (2008)

    Article  ADS  Google Scholar 

  36. A. Di Bartolomeo, F. Giubileo, S. Santandrea, F. Romeo, R. Citro, T. Schroeder, G. Lupina, Nanotechnology 22, 275702 (2011)

    Article  Google Scholar 

  37. Y. Wu, Y. Wu, K. Kang, Y. Chen, Y. Li, T. Chen, Y. Xu, AIP Adv. 6, 095014 (2016)

    Article  ADS  Google Scholar 

  38. S. Chen, W. Zhang, B. Yang, T. Wu, X. Zhang, Sci. Rep. 9, 5551 (2019)

    Article  ADS  Google Scholar 

  39. K.F. Mak, M.Y. Sfeir, Y. Wu, C.H. Lui, J.A. Misewich, T.F. Heinz, Phys. Rev. Lett. 101, 196405 (2008)

    Article  ADS  Google Scholar 

  40. V. Pourmahmoud, B. Rezaei, Optik 185, 875–880 (2019)

    Article  ADS  Google Scholar 

  41. O.L. Berman, R.. Ya.. Kezerashvili, J. Phys. Condens. Matter 24, 015305 (2012)

    Article  ADS  Google Scholar 

  42. A. Madani, S. Roshan Entezar, Physica B 431, 1–5 (2013)

  43. Yu.V. Bludov, N.M.R. Peres, M.I. Vasilevskiy, J. Opt. 15, 114004 (2013)

    Article  ADS  Google Scholar 

  44. H. Hajian, A. Soltani-Vala, M. Kalafi, Opt. Commun. 292, 149 (2013)

    Article  ADS  Google Scholar 

  45. Y. Fan, Z. Wei, H. Li, H. Chen, C.M. Soukoulis, Phys. Rev. B 88, 241403 (2013)

    Article  ADS  Google Scholar 

  46. A. Madani, S. Roshan Entezar, Superlattice Microstruct. 75, 692–700 (2014)

  47. S.R. Entezar, Z. Saleki, A. Madani, Physica B 478, 122 (2015)

    Article  ADS  Google Scholar 

  48. F. Ghasemi, S.R. Entezarand, S. Razi, Phys. Lett. A 383, 2551–2560 (2019)

    Article  ADS  Google Scholar 

  49. W. Belhadj, Opt. Quantum Electron. 52, 162 (2020)

    Article  Google Scholar 

  50. F.U.Y. Al-sheqefi, W. Belhadj, Superlattices Microstruct. 88, 127 (2015)

    Article  ADS  Google Scholar 

  51. Z. Saleki, Y. Fang, S.R. Entezar, IEEE Photon. J. 11(5), 99 (2019)

    Article  Google Scholar 

  52. A. Kumar, P. Singh, K.B. Thapa, Opt. Quantum Electron. 52, 423 (2020)

    Article  Google Scholar 

  53. J.W. Chen, J.D. Hu, X.H. Deng, J.R. Yuan, T.B. Wang, J. Mod. Opt. 67, 547–551 (2020)

    Article  ADS  Google Scholar 

  54. W. Belhadj, A.N. Al-Ahmadi, Opt. Quantum Electron. 53, 27 (2021)

    Article  Google Scholar 

  55. F. Qiao, C. Zhang, J. Wan, J. Zi, Appl. Phys. Lett. 77, 3698 (2000)

    Article  ADS  Google Scholar 

  56. G. Nimtz, A. Haibel, R.-M. Vetter, Phys. Rev. E 66, 037602 (2002)

    Article  ADS  Google Scholar 

  57. P. Yeh, P.A. Yariv, C. Hong, J. Opt. Soc. Am. 67, 423 (1977)

    Article  ADS  Google Scholar 

  58. T. Zhan, X. Shi, Y. Dai, X. Liu, J. Zi, J. Phys. Condens. Matter 25, 215301 (2013)

    Article  ADS  Google Scholar 

  59. G.W. Hanson, J. Appl. Phys. 103, 064302 (2008)

    Article  ADS  Google Scholar 

  60. V.P. Gusynin, S.G. Sharapov, J.P. Carbotte, J. Phys. Condens. Matter 19, 026222 (2007)

    Article  ADS  Google Scholar 

  61. R. Wang, J. Dong, D.Y. Xing, Phys. Stat. Sol. (B) 200, 529 (1997)

    Article  ADS  Google Scholar 

  62. H.S. Chu, C. How Gan, Appl. Phys. Lett. 102(23), 11–14 (2013)

  63. A.K. Sharma, B. Kaur, Solid State Commun. 275, 58–62 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research has been funded by Scientific Research Deanship at University of Ha’il-Saudi Arabia through project number RG-20 021.

Author information

Authors and Affiliations

Authors

Contributions

WB: conceptualization, formal analysis, investigation, software, writing—original draft, review, and editing. NBA: conceptualization, formal analysis, investigation, software, writing—original draft, review, and editing. HD: conceptualization, formal analysis, investigation, software, writing—original draft, review, and editing. OHA: conceptualization, formal analysis, investigation, software, writing—original draft, review, and editing. HA: conceptualization, formal analysis, investigation, software, writing—original draft, review, and editing. AT: conceptualization, formal analysis, investigation, software, writing—original draft, review, and editing.

Corresponding author

Correspondence to W. Belhadj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belhadj, W., Ali, N.B., Dakhlaoui, H. et al. Characterization of spectral features of cavity modes in one-dimensional graphene-based photonic crystal structures. Eur. Phys. J. B 94, 198 (2021). https://doi.org/10.1140/epjb/s10051-021-00194-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00194-9

Navigation