Skip to main content
Log in

Electronic and topological properties in heavy-element based Heusler compounds X\(_2\)RuPb (X=Sc,Y,La): first-principle method

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, we study the feasibility of converting Heusler compounds X\(_2\)RuPb (X=Sc, Y, La) into three dimensional topological insulators. We perform first-principle calculations based on the full-potential linearized augmented plane wave (FP-LAPW) method within the density functional theory (DFT) using the general gradient approximation for the exchange and correlation potential (GGA-PBE). We investigate the topological insulator behavior of our compounds in the Hg\(_2\)CuTi-type Heusler structure in terms of the electronic band inversion mechanism tuned by the spin-orbit coupling and by applying a hydrostatic strain along with a uni-axial strain which inverts the band order between \(\varGamma _6\) and \(\varGamma _8\) bands: we realized a topological phase transition from a trivial semiconductor to nontrivial topological insulator. Then, we discuss the effects of these various strains on the topology band as well as on the real and imaginary parts of the dielectric function and related optical constants.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All our numerical results (our data) have been presented as graphical or table results.]

References

  1. J. Moore, Nat. Phys. 5, 378 (2009)

    Article  Google Scholar 

  2. J.E. Moore, Nature 464, 194 (2010)

    Article  ADS  Google Scholar 

  3. L. Fu, C.L. Kane, E.J. Mele, Physical Review Letters 98, 106803 (2007)

    Article  ADS  Google Scholar 

  4. S. Chadov, X. Qi, J. Kübler, G.H. Fecher, C. Felser, S.C. Zhang, Nature materials 9, 541 (2010)

    Article  ADS  Google Scholar 

  5. H. Zhang, C.X. Liu, X.L. Qi, X. Dai, Z. Fang, S.C. Zhang, Nat. Phys. 5, 438 (2009)

    Article  Google Scholar 

  6. X.L. Qi, S.C. Zhang, Rev. Modern Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  7. M.Z. Hasan, C.L. Kane, Rev. Modern Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  8. S.M. Huang, S.Y. Xu, I. Belopolski, C.C. Lee, G. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang et al., Nat. Commun. 6, 7373 (2015)

    Article  ADS  Google Scholar 

  9. S.Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.C. Lee et al., Science 349, 613 (2015)

    Article  ADS  Google Scholar 

  10. X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng, Z. Fang et al., Phys. Rev. X 5, 031023 (2015)

    Google Scholar 

  11. B.A. Bernevig, T.L. Hughes, S.C. Zhang, Science 314, 1757 (2006)

    Article  ADS  Google Scholar 

  12. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.L. Qi, S.C. Zhang, Science 318, 766 (2007)

    Article  ADS  Google Scholar 

  13. X. Zhang, W. Wang, E. Liu, G. Liu, Z. Liu, G. Wu, Applied Physics Letters 99, 071901 (2011)

    Article  ADS  Google Scholar 

  14. W. Feng, Y. Yao, Sci. China Phys. Mech. Astron. 55, 2199 (2012)

    Article  ADS  Google Scholar 

  15. H. Jin, S.H. Rhim, J. Im, A.J. Freeman, Sci. Rep. 3, 1651 (2013)

    Article  ADS  Google Scholar 

  16. H.J. Zhang, S. Chadov, L. Müchler, B. Yan, X.L. Qi, J. Kübler, S.C. Zhang, C. Felser, Phys. Rev. Lett. 106, 156402 (2011)

    Article  ADS  Google Scholar 

  17. J. Winterlik, G.H. Fecher, C. Felser, Solid State Commun. 145, 475 (2008)

    Article  ADS  Google Scholar 

  18. T. Graf, C. Felser, S.S. Parkin, Progress Solid State Chem. 39, 1 (2011)

    Article  Google Scholar 

  19. Y. Li, J. Xia, G. Wang, H. Yuan, H. Chen, J. Appl. Phys. 118, 053902 (2015)

    Article  ADS  Google Scholar 

  20. Y. Li, H. Chen, G. Wang, H. Yuan, Appl. Surface Sci. 371, 296 (2016)

    Article  ADS  Google Scholar 

  21. X. Zhang, E. Liu, Z. Liu, G. Liu, G. Wu, W. Wang, Comput. Materials Sci. 70, 145 (2013)

    Article  Google Scholar 

  22. M. Labair, H. Rached, D. Rached, S. Benalia, B. Abidri, R. Khenata, R. Ahmed, S.B. Omran, A. Bouhemadou, S. Syrotyuk, Int. J. Modern Phys. C 27, 1650107 (2016)

    Article  ADS  Google Scholar 

  23. M. Khirat, M. Lazab, N. Bettahar, D. Rached, Solid State Commun. 276, 14 (2018)

    Article  ADS  Google Scholar 

  24. D. Xiao, Y. Yao, W. Feng, J. Wen, W. Zhu, X.Q. Chen, G.M. Stocks, Z. Zhang, Phys. Rev. Lett. 105, 125208 (2010)

    Google Scholar 

  25. W. Al-Sawai, H. Lin, R. Markiewicz, L. Wray, Y. Xia, S.Y. Xu, M. Hasan, A. Bansil, Phys. Rev. B 82, 025105 (2010)

    Article  Google Scholar 

  26. G. Ding, G. Gao, L. Yu, Y. Ni, K. Yao, J. Appl. Phys. 119, 025105 (2016)

    Article  ADS  Google Scholar 

  27. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  28. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  29. K. Dewhurst, S. Sharma, L. Nordstrom, F. Cricchio, F. Bultmark, H. Gross, C. Ambrosch-Draxl, C. Persson, C. Brouder, R. Armiento et al., ELK, http://elk. sourceforge. net (2016)

  30. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008)

    Article  ADS  Google Scholar 

  31. M. Pušelj, Z. Ban, Croatica Chemica Acta 41, 79 (1969)

    Google Scholar 

  32. F. Ahmadian, J Superconductivity Novel Magnetism 26, 1737 (2013)

    Article  Google Scholar 

  33. F. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944)

    Article  ADS  Google Scholar 

  34. D. Holec, M. Friák, J. Neugebauer, P.H. Mayrhofer, Phys. Rev. B 85, 064101 (2012)

    Article  ADS  Google Scholar 

  35. S.C. Wu, G.H. Fecher, S. Shahab Naghavi, C. Felser, J. Appl. Phys. 125, 082523 (2019)

  36. M. Mehl, J. Osburn, D. Papaconstantopoulos, B. Klein, Phys. Rev. B 41, 10311 (1990)

    Article  ADS  Google Scholar 

  37. M.J. Mehl, B.M. Klein, D.A. Papaconstantopoulos, Principles 1, 195 (1995)

    Google Scholar 

  38. M. Born, K. Huang, Dynamic theory of crystal lattice, clarendon (1954)

  39. S. Pugh, The London, Edinburgh, and Dublin philosophical magazine. J. Sci. 45, 823 (1954)

    Google Scholar 

  40. S.C. Wu, S.S. Naghavi, G.H. Fecher, C. Felser, arXiv preprint arXiv:1704.01741 (2017)

  41. H. Shi, D. Parker, M.H. Du, D.J. Singh, Phys. Rev. Appl. 3, 014004 (2015)

    Article  ADS  Google Scholar 

  42. H. Ehrenreich, M. Cohen, Phys. Rev. 115, 786 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  43. C. Ambrosch-Draxl, J.O. Sofo, Comput. Phys. Commun. 175, 1 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to anonymous reviewer for his precious comment on our work. Part of the calculations were conducted on ENPO UCI Al-Farabi Supercomputer.

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to M. Elchikh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakred, Y., Bahlouli, S. & Elchikh, M. Electronic and topological properties in heavy-element based Heusler compounds X\(_2\)RuPb (X=Sc,Y,La): first-principle method. Eur. Phys. J. B 94, 135 (2021). https://doi.org/10.1140/epjb/s10051-021-00141-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00141-8

Navigation