Skip to main content
Log in

Elastic and thermodynamic properties of cubic perovskite type \(\hbox {NdXO}_{3}\) (X=Ga, In)

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The elastic and thermodynamic properties of \(\hbox {NdGaO}_{3}\) and \(\hbox {NdInO}_{3}\) with the space group Pm\(\bar{3}\)m (no. 221) are studied for the first-time using density functional theory. The computed equilibrium lattice constants at stable phase are found to be 3.89 and 4.14 Å which are in a good agreement with literature. Elastic constants are computed to evaluate mechanical behaviours of materials. By applying Born stability criteria for elastic constants, it is found that both materials are mechanically stable. Moreover, bulk and shear modulus, Poisson’ ratio, Cauchy pressures, and Young modulus are examined. Ductile and brittle behaviour analysis indicates that both materials are ductile in nature. The thermodynamic properties such as thermal expansion coefficient, Grüneisen parameter, bulk modulus, specific heat capacities, and entropy are computed at a temperature range of 0–1000 K. The calculated elastic and thermodynamic properties can serve as a reference for future investigations as some of these physical properties can be difficult to determine experimentally.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and the data that support the findings of this study are available on request from the corresponding author.]

References

  1. A. Dahani et al., Electronic structure and magnetic properties of rare-earth perovskite gallates from first principles. J. Chin. Phys. B 26(1), 017101 (2017)

    Article  ADS  Google Scholar 

  2. A. Senyshyn et al., Thermal expansion of the perovskite-type \(\text{ NdGaO}_{3}.\). J. Alloys Compd. 382(1–2), 84–91 (2004)

    Article  Google Scholar 

  3. E. Talik et al., XPS characterisation of neodymium gallate wafers. J. Alloy. Compd. 377(1), 259–267 (2004)

    Article  Google Scholar 

  4. M.E.A. Monir et al., Study of structural, electronic, and magnetic properties of cubic lanthanide based on oxide perovskite-type \(\text{ NdGaO}_{3}\). J. Supercond. Novel Magn. 32(7), 2149–2154 (2019)

    Article  Google Scholar 

  5. M.E.A. Monir, Half-metallic ferromagnetism in cubic perovskite type \(\text{ NdInO}_{3}\). J. Philos. Mag. 2020, 1–16 (2020)

    Google Scholar 

  6. M.K. Butt, M. Yaseen, A. Ghaffar, M. Zahid, First principle insight into the structural, optoelectronic, half metallic, and mechanical properties of cubic perovskite \(\text{ NdInO}_{3}\). Arab. J. Sci. Eng. 20, 4967–4974 (2020)

    Article  Google Scholar 

  7. G. Paolo et al., Quantum Espresso: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21(39), 395502 (2009)

    ADS  Google Scholar 

  8. A. Dal Corso, Pseudopotentials periodic table: from H to Pu. J. Comput. Mater. Sci. 95, 337–350 (2014)

    Article  Google Scholar 

  9. M. Methfessel, A. Paxton, High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40(6), 3616 (1989)

    Article  ADS  Google Scholar 

  10. A. Dal Corso, Elastic constants of beryllium: a first-principles investigation. J. Phys.: Condens. Matter 28(7), 075401 (2016)

    ADS  Google Scholar 

  11. S. Al, Investigations of physical properties of \(\text{ XTiH}_{3}\)and implications for solid state hydrogen storage, in Zeitschrift für Naturforschung A, p. 1023 (2019)

  12. A. Iyigor, Investigations of structural, elastic, electronic, vibrational and thermodynamic properties of RhMnX (X \(=\) Sb and Sn). Mater. Res. Express 6(11), 116110 (2019)

    Article  ADS  Google Scholar 

  13. R. Gaillac, P. Pullumbi, F.X. Coudert, ELATE: an open-source online application for analysis and visualization of elastic tensors. J. Phys.: Condens. Matter 28(27), 275201 (2016)

    Google Scholar 

  14. R. Singh, First principle study of structural, electronic and thermodynamic behavior of ternary intermetallic compound: CeMgTl. J. Magn. Alloys 2(4), 349–356 (2014)

    Article  Google Scholar 

  15. F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Nat. Acad. Sci. USA 30(9), 244–247 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  16. G.A. Geguzina, V.P. Sakhnenko, Correlation between the lattice parameters of crystals with perovskite structure. Crystallogr. Rep. 49(1), 15–19 (2004)

    Article  ADS  Google Scholar 

  17. S. Al, N. Arikan, A. Iyigör, Investigations of structural, elastic, electronic and thermodynamic properties of \(\text{ X}_{2}\)TiAl alloys: a computational study. Zeitschr. für Naturforschung A 73(9), 859–867 (2018)

    Article  ADS  Google Scholar 

  18. A.H. Reshak et al., First-principles calculations of structural, elastic, electronic, and optical properties of perovskite-type \(\text{ KMgH}_{3}\) crystals: novel hydrogen storage material. J. Phys. Chem. B 115(12), 2836–2841 (2011)

    Article  Google Scholar 

  19. S. Benlamari et al., Structural, electronic, elastic, and thermal properties of \(\text{ CaNiH}_{3}\) perovskite obtained from first-principles calculations. Chin. Phys. B 27(3), 037104 (2018)

    Article  ADS  Google Scholar 

  20. S. Al, Theoretical investigations of elastic and thermodynamic properties of \(\text{ LiXH}_{4}\) compounds for hydrogen storage. Int. J. Hydrogen Energy 44(3), 1727–1734 (2019)

    Article  Google Scholar 

  21. P. Li et al., First-principles investigations on structural stability, elastic and electronic properties of \(\text{ Co}_{7}M_{6} (M=\) W, Mo, Nb) \(\mu \) phases. Mol. Simul. 45(9), 752–758 (2019)

    Article  Google Scholar 

  22. C. Huang et al., First-principles calculations of stability, electronic and elastic properties of the precipitates present in 7055 aluminum alloy. Int. J. Mod. Phys. B 32(09), 1850104 (2018)

    Article  ADS  Google Scholar 

  23. D. Pettifor, Theoretical predictions of structure and related properties of intermetallics. J. Mater. Sci. Technol. 8(4), 345–349 (1992)

    Article  Google Scholar 

  24. S.F. Pugh XCII, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. J. Sci. 45(367), 823–843 (1954)

    Article  Google Scholar 

  25. V.V. Bannikov, I.R. Shein, A.L. Ivanovskii, Electronic structure, chemical bonding and elastic properties of the first thorium-containing nitride perovskite \(\text{ TaThN}_{3}\). Phys. Status Solidi (RRL) Rapid Res. Lett. 1(3), 89–91 (2007)

    Article  ADS  Google Scholar 

  26. L. Liu et al., First-principles investigations on structural and elastic properties of orthorhombic TiAl under pressure. Crystals 7(4), 111 (2017)

    Article  Google Scholar 

  27. C. Kürkçü, Ç. Yamçıçıer, Structural, electronic, elastic and vibrational properties of two dimensional graphene-like BN under high pressure. Solid State Commun. 303–304, 113740 (2019)

    Article  Google Scholar 

  28. J. Long, L. Yang, X. Wei, Lattice, elastic properties and Debye temperatures of \(\text{ ATiO}_{3} (A=\)Ba, Ca, Pb, Sr) from first-principles. J. Alloy. Compd. 549, 336–340 (2013)

    Article  Google Scholar 

  29. J. Chang et al., Structure and mechanical properties of tantalum mononitride under high pressure: A first-principles study. J. Appl. Phys. 112(8), 083519 (2012)

    Article  ADS  Google Scholar 

  30. H. Ledbetter, A. Migliori, A general elastic-anisotropy measure. J. Appl. Phys. 100(6), 063516 (2006)

    Article  ADS  Google Scholar 

  31. L. Qiang, H. Duo-Hui, C. Qi-Long, W. Fan-Hou, Phase transition and thermodynamic properties of \(\text{ BiFeO}_{3}\) from first-principles calculations. J. Chin. Phys. B 22(3), 037101 (2013)

    Article  ADS  Google Scholar 

  32. P.L.D. Alexis Thérèse Petit, Recherches sur quelques points importants de la Théorie de la Chaleur. Ann. Chim. et de Phys. 10, 395–413 (1819)

  33. A. Petit, P. Dulong, Research on some important aspects of the theory of heat. J Ann. Philos. 14, 189–198 (1819)

  34. S. Wei, C. Li, M.Y. Chou, Ab initio calculation of thermodynamic properties of silicon. Phys. Rev. B 50(19), 14587–14590 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selgin Al.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al, S. Elastic and thermodynamic properties of cubic perovskite type \(\hbox {NdXO}_{3}\) (X=Ga, In). Eur. Phys. J. B 94, 108 (2021). https://doi.org/10.1140/epjb/s10051-021-00120-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00120-z

Navigation