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Abstract. We explain the vibrations of a Frenkel–Kontorova (FK) model under Shapiro steps by the
action of an external alternating force. We demonstrate Shapiro steps for a case with soft ‘springs’ between
an 8-particles FK chain. Shapiro steps start with a single jump over the highest SP4 in the global valley
through the PES. They finish with doubled, and again doubled oscillations. We study in this part I a
traditional FK model with periodic boundary conditions.

1 Introduction

Shapiro steps are reported in the observation of dif-
ferent experiments [1–15]. We concentrate here on the
emergence of such steps in calculations with the FK
model with periodic boundary conditions (PBC) [16–
20]. This paper can be seen as a deeper explanation
on recent results [21,22], but mainly it is devoted to
the aim to understand what happens under a Shapiro
step inside the FK chain. How does the chain in the
mountains of the potential energy surface (PES) moves
if it slides downhill the effective PES? To the best of
our knowledge, we think that the question was never
treated in the past. Usually, the average velocities of
the chain are studied. To look inside the FK chain, we
use in this work the PES of the chain [23–25], as well
as the tool of the highest Lyaponov Exponent [26].

The FK model describes the situation of a chain of
particles with harmonic spring forces in between. It is
embedded in a site-up potential, and additionally it suf-
fers from a tilting force of ‘direct current’ (dc) and/or
‘alternating current’ (ac) character. Here we specialize
in the spring force to a soft value [21], in comparison
to the site-up potential, in contrast to our former refer-
ences [23–25]. The competition between the collective
behavior of softly correlated particles and the influence
of the environment on individual particles is important
for many-particle problems.

The periodic substrate potential is assumed to be a
sinusoidal curve. Other forms are possible [16] but not
treated here. The chain is really of finite length. We
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search the form of the movement of a 1D FK chain
through a site-up potential. The winding number is
the relation, the misfit, between the original spring dis-
tances, ao, and the periodicity, as, of the site-up poten-
tial. We discuss an example of ‘soft’ springs with wind-
ing number 1/2 being the ratio of the two periodicities
of the problem.

Overall, we treat here the PES for N particles of
the chain and search for a global valley through the
‘mountains’ of the N -dimensional PES for a sliding of
the chain over the site-up potential. The method cor-
responds to studies of chemical reactions through the
PES of a molecule. We use the ansatz of a Langevin
equation [21].

We find that the chain does not move as an inelastic,
solid body along the site-up potential with translational
symmetry of the chain. The motion of the chain goes
on by steps of the periodicity as with internal compres-
sion and/or stretchings of the chain. This we can here
illustrate.

In Sect. 2, we introduce the FK—in a variable box—
model used in this paper. In Sect. 3, the case of the
spring potential with N = 8 chain length [21] and
k = 1/4v soft springs is discussed. In the main Sect. 4,
we calculate and discuss a Langevin equation where
the Shapiro steps emerge. To detect all possible such
steps, we use the highest Lyapunov exponent which is
explained in Sect. 4.2. Finally, we give some conclusions.

2 The FK model

u = (u1, ..., uN ) represents the position of N discrete
particles of a chain. We treat a finite chain. The posi-
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tions ui are on a 1D axis. It holds ui < ui+1 for the
ordered chain. The chain without the site-up potential,
and without the external force, has the equilibrium dis-
tance, ao. The current end points of the chain determine
the current average distance ão = (uN −u1)/(N −1). In
the past traditionally, the so called periodic boundary
conditions (PBC) of the kind uN+1 = u1+N ao, with ao

equilibrium constant of the chain, and u0 = uN − N ao

[21] using two ghostly particles u0 and uN+1 are used.
The harmonic spring potential is the sum of all par-

ticles and it results in the harmonic energy of nearest
neighbor potentials, and a variable box potential repre-
senting the PBC

Sbox(u) = k
2 (

∑N−1
i=1 (ui+1 − ui − ao)2

+(u1 − uN + (N − 1) a0)2). (1)

The last summand is the contribution to the PBC; its
form leads to a simple gradient. The PES for the vari-
able changes of the ui is the Frenkel–Kontorova model
‘in a variable box’ (FKivb)

V (u) = P (u) + Sbox(u) (2)

where the site-up P is the potential [21]

P (u) =
v

(2π)2

N∑

i=1

(1 − Cos(2π ui/as)). (3)

In numerical tests, we scale the as-constant of the P -
potential to 1 for computational simplicity. We fix the
potential constants v = 4 and k = 1 and use a short
chain with N = 8 particles [21]. We treat a special case
of the FKivb model with ao = as/2 with the commen-
surate misfit, 1/2, between the two potentials.

Because v > 0, and ao �= as, the on-site potential
will modulate the chain if an external further force is
applied. We use a linear force. We name the resulting
PES an effective PES

Veff (u) = V (u) − F (l1, .., lN )T · u. (4)

The multiplication point between the N -dimensional
normalized force vector (l1, .., lN )T and the N -variable
u means the scalar product. F is the factor for the
amount of the external force. The new term is named
dc driving [17,27] (for direct current) if F is fixed. If the
amount of the force alternates in time then one names
it ac driving [28] (for alternate current) with

F = Fdc + Fac sin(2π νo t) (5)

with a frequency νo, and a ‘time’ variable, t, which will
also be used for the step length below in a Langevin
equation. The force tilts the former on-site potential
for particle ui with the incline F li, i = 1, ..., N . The
extremal points of the effective PES, Veff , minimums
and SPs, move if F increases. A corresponding curve is
described by a Newton trajectory (NT) [29–32].

3 The overdamped Langevin equation

The components of the gradient of the effective PES
are

geff i = k (2 ui − ui+1 − ui−1) + v sin(ui) − F li (6)

for i = 1, ..., N . For i = 0 and i = N + 1 here emerge
additional particles which are connected over the PBC.
They form the movable ‘box’ of this FK model, see
Sect. 2. If we put the gradient to zero, we get the ansatz
of the NT theory [23]. In contrast, one can put the gra-
dient into a steepest descent equation, the overdamped
Langevin equation [21]

η u̇ = −geff (u, t). (7)

A ‘time’, t, comes into the effective gradient by the
external ac-force, Eq. (5). Every time step is depicted by
‘Node’ in the corresponding figures. We use the damp-
ing factor η = 100 throughout. Because of the damping,
the ‘velocity’ u̇ in Eq. (7) has to be treated carefully.
It describes the steepest descent along geff in small
steps. It is a mathematical tool for the description of
an abstract sliding along the tilted site-up potential.
Nevertheless, the abstract velocity also originates the
Shapiro steps being the yield of many former references
[16,17,21,22,33], to name just a few. In former works,
the unspecific washboard force [6] li = 1/

√
N for all i

is usually used.
Be Fc the critical force. If F > Fc, then a really

amount emerges in the Langevin equation, for the veloc-
ity of a change of the chain. F is then the tilting force
which causes the depinning of the chain and which
causes the sliding downhill the effective PES.

What happens with the ‘variable’ ac force?
Fac sin(2π νo t) is alternating, and for Fdc near Fc

critical, it can be that the sum of both overcomes Fc,
or again is below Fc, if t goes on. In Fig. 1 we give
a schematic picture of a Langevin ac-driven particle. A
harmonic potential in x direction is tilted in y direction,
where a sliding also goes on for every external force. If
additionally the ac-vibration is applied then the particle

Fig. 1 Schematic pathway of an ac-driven Langevin parti-
cle on a tilted PES
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‘vibrates’ on the downhill path over the x direction. In
this way, we have to imagine the case of a Shapiro-
step of the ac-driven FK model. Anywhere in the PES
mountains of the chain the frequency of the ac driving
finds left and right walls for a downhill vibration of
parts of the chain.

3.1 Lyapunov exponents

To understand the global behavior of the solutions of
the Langevin equation, one studies the action of the
phase flow on certain partial sets of the phase space
RN . Usually, the flow is not to grasp analytically, but
the vector field, geff , of Eq.(7) is the velocity field of the
phase flow. The divergence, div geff , then determines
the velocity by which the value of an infinitesimal vol-
ume element changes at u(t), under the action of the
flow. If u(t) is a region of RN , v(t) is its volume, and
s(t) is its border then one gets after a Liouville theorem
[34]

d v(t)
dt

=
∫

s(t)

div geff (u)du. (8)

If one approximates div geff (u) to be nearly constant
then one would get v(t) = v(0)et div geff . The diver-
gence of the effective gradient is the sum of the diago-
nal of the Hessian of the PES. If the sum is less than
zero, then we name the system dissipative. If one con-
centrates on the largest eigenvalue of the Hessian, one
can use this Lyapunov exponent for a quantity which
characterizes the rate of separation of two trajectories
which are infinitesimally close at an initial point of time.
We treat, of course, the Eq. (7). They form a dynamical
system of N first-order ordinary differential equations.
One assumes a rate by

|δu(t)| ≈ eλt|δuo(t)|. (9)

Of course, if the Lyapunov exponent λ < 0 one can
expect some sort of order for different trajectories. The
more negative λ < 0 is the more regular movement is to
expect. Usually, for general dynamical systems, the rate
depends on the initial points. However, here, we have
a dissipative system where the start only determines
some transient steps.

Lyapunov exponents are a tool for detecting chaos
[35]. They provide a computable, quantitative measure
of the degree of stochasticity of solutions for large times,
t. We use the works of Benettin et al. [36], and Wolf
et al. [26] for an application to the FKivb model. It
is based on a Gram-Schmidt method. We use the alge-
braic formulation of the model from which the Jaco-
bian matrix is derived. A set of N infinitesimal per-
turbations is generated (one for each direction of the
phase space) and the Jacobian matrix is used to esti-
mate locally the divergence or the convergence of the
flow. To dimension, N , of Eq. (7) we form N further vec-
tors, yi, i = 1, ..., N , the components of which are set
at start to yi,j = δi,j = 0 for i �= j and yi,i = δi,i = 1.

Therefore, to say, every yi represents one dimension of
the chain, thus one particle. Using the Hessian of the
PES, note that for the FK model holds Heff = H, we
treat the extension of the Langevin Eq. (7) by the N2

additional equations

Ẏ = H(u(t)) Y. (10)

This is a so-called linearization of Eq. (7) with respect
to a solution u(t). The Hessian matrix is the Jacobian
matrix of the gradient, and the yi are treated as a small
deviation of the trajectory u(t). The Hessian matrix in
Eq. (10) is a linear evolution operator in the tangent
space of the yi vectors. For large t, the limit

Λ = lim
t→∞

1
2t

log(Y(t)YT (t)) (11)

defines a matrix, if it exists [37]. The eigenvalues of
matrix Λ are the Lyapunov exponents. Using a proposal
of Refs. [26,38], one can orthonormalize the yi vectors
in every t-step and thus one can automatically get the
eigenvalues. In our case, the set of Lyapunov exponents
will be the same for almost all start structures of the
chain.

We fix Fac = 0.2, and νo = 0.2. For a step length of
0.01 in t and 100 000 steps for the common system (7)
and (10) (in N (N + 1) dimensions), we calculate for
a series of Fdc values in the range from Fc to 1.0 the
Lyapunov exponents, with steps of ΔFdc = 0.001. We
represent the first Lyapunov exponent, named λ, for
increasing Fdc in Fig. 2. Compare the analogous former
result [21].

We will treat the regions of the spikes of Fig. 2: every
spike ‘houses’ one Shapiro step of the FKivb model. The
deeper the value of λ, the more ‘stable’ is the oscilla-
tion of the chain on its way downhill the tilted site-up
potential. Note: all interesting aspects concern the slid-
ing region of the external force. There is no kind of
‘steady state’ as it is pretended [33]. At least, we find a
kind of steady flow.

Fig. 2 The first Lyapunov exponent, λ, for increasing
external force, Fdc, with Fac = 0.2 and νo = 0.2 fixed. The
biggest spike around Fdc = 0.22 depicts the first, the main
Shapiro step. Further steps are numbered with increasing
Fdc
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4 The PES of the FKivb chain N = 8, v =
4, k = 1

4.1 The first Shapiro step for the periodic
movements of 2π along the site-up potential

In the range of Fdc ∈ [0.16, 0.3], one meets the first
Shapiro step, compare Fig. 1 a) of Ref. [21]. We use the
fixed ac-force Fac = 0.2 and νo = 0.2.

We draw in Fig. 3 the energy profile of the PES only,
over a trajectory, thus the tilting energy is suppressed.
The additional part of the external energy is projected
out of the representation. This delivers a good imagina-
tion of the movement of the chain on the sliding down-
hill pathway. The profile shows periodic, regular, and
short oscillations of a stable kind. For the cases of Fdc

in the full range of the Shapiro step, we find the same
frequency of the profile: it is locked. We emphasize a
cycle of 1 000 time steps of the profile. The time steps
are depicted by ‘Node’. It is done in Fig. 3 by the blue
profile for Fdc = 0.17, and by the green profile for the
larger Fdc = 0.28. An animation for the front part of
the Fdc of Shapiro step 1 is given in the Supplementary
data.

The turning points (TP) of the blue profile are
depicted by Mi for the upper ones, and by mi for the
lower ones. One full cycle over 4 TPs makes a move-
ment of the chain by one site-up well further, a step of
2π along the site-up potential, see Fig. 4. Two full cycles
of the ac-force are used here. A trajectory in the region
of the first Shapiro step explores the PES of the chain
in an impressive kind: the upper TPs on the PES cross
the ‘global’ SP4 where half of the particles at the same
time turn over their next tops of the site-up potential.
It happens just in time with the maximal external force,
compare the red help curve in Fig. 3. In every substep
from mi to Mi, i = 1, 2, four alternating particles climb
over the next tops of the site-up potential, and on the

Fig. 3 Energy profiles (PES only, without the effective
part) of 1000 t-steps of two Langevin trajectories at the
Shapiro step 1. The colors are Fdc = 0.17 blue, and
Fdc = 0.28 green. Four turning points of the blue profile are
depicted by Mi for maximal TPs, or by mi for minimal TPs.
One double-cycle of 1000 nodes of the profile corresponds
to a double-step of the chain by one period over the site-
up potential, see Fig. 4. For comparison, the ac-oscillation
is schematically shown by the red curve. Its scale is adapted
to the PES scale

other side they form the next, complementary global
minimums of the chain.

The two upper SP4 are mirror pictures, vice versa,
thus they are equal in energy. One can imagine that
particle 5 plays the role of a reflection point to obtain
the other version. However, this is only an abstract pic-
ture, because it would change the numbering of the par-
ticles. Note that the two SP4 are the tops of the global
valley through the PES. One can imagine still SPs with
higher index, however, they do then not belong to the
interesting valley through the PES for a movement of
the chain.

The lower TPs cross the two global minimums of the
chain. The two global minimums, on the other hand,
are of the same energy, but they are not mirror pictures,
vice versa. Internally, the structures of all four station-
ary points have a mirror symmetry with the reflection
point at the half of the central bond, between particles
4 and 5.

The oscillation fits into the ‘global’ valley over the
two high SP4 structures. The corresponding times for
an increase or a decrease of the pathways on the PES
are perfectly synchronized with the ac-oscillation. Note
that the chain behaves not as a fixed body like former
workers had assumed [33,39]. No, it moves in contrast
like an accordion with internally changing distances. At
minimum m1, we have ão > ao, at SP4 it is ão = ao,
but at minimum m2, we have ão < ao.

On the frequency itself: In the program, we use a
t-step length of 1/η=0.01, and νo = 0.2, thus a cycle
of 500 t-steps is one period of the ac-force. 1 000 steps
correspond in Fig. 3 to a double-cycle in the ac-force
(5) of sin(4π). 500 steps of the ac excitation make the
cycle from m1 to M1, but the next 500 steps finish the
cycle over m2 to M2. Then, the next double-cycle starts.
The maxima of the profile correspond to the maxima of
the ac-force, and the minima of the profile correspond
to the minima of the ac-force. The Shapiro step needs
such a lockstep of the sliding and the ac-force (5).

How can the equal frequency be realized under a dif-
ferent external force, Fdc? We can study this by the
behavior of the green profile being at the end of the step
interval of Fdc. The sliding still goes over the global SP4

of the chain in the substep from m1 to M1. Thus, the
quite rigid box condition (1) prevents any other lower
SPs of a lower index than four [23–25], compare also
part II of this series [40]. We try to understand how
the period of the sliding acts. We are in the region of
a larger 0.28 = Fdc > Fc = 0.255 of a sliding. However,
the negative part of the ac-force, of Fac sin(2πνot), can
cause the sum of both parts become smaller than Fc.
Then, the chain is pinned in the current well of the PES.
The Langevin trajectory searches the minimum of the
well, but the ac-force continuously changes. It causes
an internal oscillation of the chain just in time with the
ac-force, so that we can overcome the next SP4 for the
next cycle at the suitable time step. Note that the lower
TPs at the mi structures now do not cross the global
minimums of the chain. The larger Fdc in this case may
cause an earlier crossing of the region of the SP4, at
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Fig. 4 Structures of the chain for the four turning points of the blue profile of the Langevin trajectory of Fig. 3. They
form the corner stones of a full cycle of the moving chain with a 2π step along the site-up potential. The lower TPs cross
the two different structures of the global minimum of the chain. The upper TPs cross the two different structures of the
SP4. The particles are artificially lifted on the potential to guide the eye. The real chain is on a straight line. Only the
distances can change

Fig. 5 Structures of the chain for the six turning points of the green profile of the Langevin trajectory of Fig. 3. They are
a full cycle of the moving chain with a 2π step along the site-up potential. Internally happens a substep with a forward-
and a backward oscillation between m1 and m3

Fig. 6 Accidental section of an energy profile (PES only)
of a Langevin trajectory between the first and the second
Shapiro steps, at Fdc = 0.304. A periodic oscillation does
not emerge

M1, then the internal vibration will consume the addi-
tional time so that the next crossing of the SP4 region
at M3 is again in time with the maximum of the exter-
nal ac-oscillation, compare Fig. 5. Then, a next cycle
will start.

One can ask how the large interval of Fdc values of
the main Shapiro step will come to its end? A profile is
shown for the region between the intervals of the first
and the second Shapiro step, at Fdc = 0.304 in Fig. 6.
The vibration ‘continuously’ degenerates.

Fig. 7 Energy profiles (PES only) of a cycle of 500 t-steps
of two Langevin trajectories at the second Shapiro step. The
colors are: Fdc = 0.317 blue, and Fdc = 0.388 green. One
cycle of the profile of 500 nodes corresponds to a step of the
chain by one period over the site-up potential, see Fig. 8

4.2 A second Shapiro step

This step includes the interval Fdc ∈ [0.315, 0.4]. We
use a fixed ac-force Fac = 0.2 and νo = 0.2. The profile
in Fig. 7 again shows periodic, and regular oscillations
of a stable kind. For the cases of Fdc in the range of the
Shapiro step, we find the same frequency of the profile:
it is locked. We emphasize a cycle over 1 000 time steps
of the profile. It is done in Fig. 7 by the blue profile for
Fdc = 0.317, and by the green profile for Fdc = 0.388.
Note the equal frequencies of the curves in Fig. 7. The
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Fig. 8 The turning points of the blue profile of a Langevin trajectory of Fig. 7 form a full cycle of the moving chain with
2π along the site-up potential

Fig. 9 The six turning points of the green profile of a Langevin trajectory of Fig. 7 form the full cycle of the moving chain
with 2π along the site-up potential

turning points of the blue profile are depicted with Mi

for upper, and mi for lower ones. One full cycle over
four turning points makes a movement of the chain by
one site-up well further, a step of 2π along the site-
up potential. It looks like the first Shapiro step, how-
ever, now only 500 time steps form one cycle. Thus,
the velocity is doubled by which the chain slides down-
hill, in comparison to step one. The TPs are depicted
in Fig. 8.

Again the question emerges, how can the equal fre-
quency of the step be realized under a different exter-
nal force, Fdc? Similarly, we look at the behavior of the
green profile being at the end of the step interval of Fdc.
The sliding again goes over the global SP4 of the chain
in the substeps over the Mi. But an internal oscillation
of the chain just in time with the ac-force realizes that
it is overcoming the next SP4 for the next cycle at the
suitable time step.

Good to see by the structures, in Fig. 9, is that some
parts of the chain do a back-step in their site-up wells
if the ac part of the force is in a pinned region. Though
a half-loop of the Langevin trajectory is there in the
pinned region of the energy, it does not converge to a
fixed structure because the trajectory escapes for the
next F > Fc from the pinned region and slides into the
next well. The steady change of the external force, F ,
by the ac-part is necessary for a Shapiro step. For a
pure dc-force one has the theorem that if u̇i(0) > 0, for
i = 1, ..., N , then it holds in the sliding case u̇i(t) > 0
for all t > 0 [41]. Then, all particles move forward only.

Fig. 10 Energy profiles (PES only) of a double-cycle of
500 t-steps of a Langevin trajectory at the Shapiro step 3
at Fdc = 0.44. One cycle of the profile corresponds to a step
of the chain by one period over the site-up potential, see
Fig. 11

4.3 A third Shapiro step

The next Shapiro step of the movement of 2π along the
site-up potential is in the range of Fdc ∈ [0.435, 0.45].
We again use the fixed ac-force Fac = 0.2 and frequency
νo = 0.2. The profile in Fig. 10 shows periodic, regular,
and short oscillations of a stable kind. We emphasize
1 000 nodes being the time steps. An animation for the
final part of the Fdc is given in the Supplementary data.

The resulting force, F , is now throughout over Fc,
The turning points of the profiles are again depicted
with Mi for upper, and mi for lower ones. Correspond-
ing structures of the chain for the points Mi or mi, are
shown in Fig. 11.
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Fig. 11 The six turning points of the profile of a Langevin curve of Fig. 10 form 1+1/2 cycles of the moving chain along
the site-up potential

Fig. 12 Energy profile (PES only) of 500 t-steps of a cycle
of the Langevin trajectory of Shapiro step 4

A full cycle over six turning points causes a movement
of the chain by one and a half site-up well further. Such
a cycle consists of three nearly equal subcycles.

A cycle of 500 steps in Fig. 10 corresponds to 3 sub-
cycles in the ac-force (5) of sin(2π).

4.4 Shapiro step 4

At Fdc = 0.565 is a small region of a periodic oscillation
with 8 TPs, over a time interval of 500 time steps. We
represent one profile in Fig. 12.

A cycle of 500 steps in Fig. 12 corresponds to 4 sub-
cycles in the ac-force (5) of sin(2π).

4.5 A fractional Shapiro step

We treat the external excitation with Fdc = 0.308
between the first and the second Shapiro step [21],
compare Fig. 2. It was named in former treatments as
Shapiro step with number 3/2. It results in a periodic
oscillation with one cycle over 1 000 t-steps, and an
oscillation number of 8 TPs all in all. It causes a move-
ment of the chain over 3π along the site-up potential.
Three subcycles move 1π further along the TPs M1 to
M3, but one subcycle is a back-movement, from M4 to
m4. In Fig. 13, we show the energy profile of a cycle.

Fig. 13 Energy profile (PES only) of a cycle of 1 000 t-
steps of a Langevin trajectory at Shapiro step 3/2 with
Fdc = 0.306

5 Discussion

Shapiro steps concern the average velocity of the trajec-
tory of the Langevin equation. This velocity is locked
on a step. Note that there is no such construct like a
‘steady state’ as it is often claimed in former papers
[16,33]. The Langevin trajectory goes downhill the
effective PES without forming a stable orbit.

In the case of a linear chain treated here, there is no
possibility that a single particle moves. The interaction
of the particles in the chain leads to collective states like
antikinks or kinks. Here, the box-potential makes that
‘fourfold’ antikinks or kinks move along the chain from
a zero level minimum over the SP4 to the next zero level
minimum. However, no real dynamics is treated. We
only study the damped steepest descent on the tilted
effective PES.

References [16,17,21,22,33] pretend a translational
symmetry

ul(t) + 2π = ul+i(t + s) (12)

with an integer index, i. It means that the chain acts
like a single body [39]. The chain is an ordered chain of
N particles where every particle has its own, fixed num-
ber, l. The imagination of a symmetry like in Eq. (12)
may lead to the picture of a rigid chain with a fixed a0

distance. Already with the first Shapiro step one can
observe that this picture is not correct. Thus, asser-
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tion (12) is not correct. What the box condition of
the spring part of the potential energy, Eq.(5), enforces
here is a fourfold symmetry of the chain: any two con-
secutive particles behave like the next two, or the two
before. This property does not hold for a chain with free
boundaries [40]. In contrast, we found that for an FK
chain with free boundaries the results of the FK model
with the periodic boundary conditions are not trans-
ferable. Surprisingly, the sequence of the Shapiro steps
becomes inverse, see the accompanying paper, part II
of this series [40].

6 Conclusion

In the depinned case of the FKivb chain, the solution of
the Langevin equation is, in principle, a boring affair:
it slides downhill, and slides, and slides down to minus
infinity. However, an interesting fact is the possibility
of regular, equal vibrations over certain intervals of the
Fdc force. Thus, the frequency, as well as the average
velocity of the chain, are locked. There emerge Shapiro
steps which one can compare with experimental results
[1–15].

It is a matter of fact, that we confirm the reported
properties of FKivb chains under (dc + ac)-force in the
past [16,17,21,22], to name but few. Like the inte-
ger and fractional steps, the Farey-steps [18,34], the
changeability of ac-frequency, or of the site-up poten-
tial, and others. Here, we demonstrate the kind of oscil-
lation which the FKivb chain undergoes at a Shapiro
step. The chain ‘breathes’ as a whole, it is compressed,
or stretched into the two wells of the two different global
minimums, but the barrier in between is formed by the
two SP4-structures, see Fig. 4 as the prototype.

Different values of the parameter Fdc on one and
the same Shapiro step are balanced by different ‘back’-
oscillations of subloops of the oscillation. The oscilla-
tion frequency itself is locked, just in time with the
ac-frequency.

For Shapiro step 1, we obtain an oscillation of the
chain, compare Fig. 4, exactly in time with the ac-fre-
quency. The movement leads over the profile between
global minimums and the two SP4. The corresponding
pathway goes in the SP region along a highly symmetric
ridge. This is enforced by the box-potential which pre-
vents an outbreak to lower index SPs, compare part II
of this series [40]. If the dc-amount in the interval of the
Shapiro step increases, we find a balance of the addi-
tional force by an internal back-vibration of the chain.
In sum, the same frequency happens again.

For Shapiro step 2, we get a shorter oscillation cycle
to one half of number one. But the character of the
oscillation is the same. And so on for the still higher
steps.
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