Skip to main content
Log in

Roles of cooperative effects and disorder in photon localization: the case of a vector radiation field

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We numerically study photon escape rates from three-dimensional atomic gases and investigate the respective roles of cooperative effects and disorder in photon localization, while taking into account the vectorial nature of light. A scaling behavior is observed for the escape rates, and photons undergo a crossover from delocalization toward localization as the optical thickness of the cloud is increased. This result indicates that light localization is dominated by cooperative effects rather than disorder. We compare our results with those obtained in the case of a scalar radiation field and find no significant differences. We conclude that the scalar model constitutes an excellent approximation when considering photon escape rates from atomic gases.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.].

References

  1. S.E. Skipetrov, I.M. Sokolov, Phys. Rev. Lett. 112, 023905 (2014)

    Article  ADS  Google Scholar 

  2. L. Bellando, A. Gero, E. Akkermans, R. Kaiser, Phys. Rev. A 90, 063822 (2014)

    Article  ADS  Google Scholar 

  3. S.E. Skipetrov, I.M. Sokolov, Phys. Rev. Lett. 114, 053902 (2015)

    Article  ADS  Google Scholar 

  4. S.E. Skipetrov, Phys. Rev. Lett. 121, 093601 (2018)

    Article  ADS  Google Scholar 

  5. W. Guerin, M.O. Araujo, R. Kaiser, Phys. Rev. Lett. 116, 083601 (2016)

    Article  ADS  Google Scholar 

  6. P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  7. R.H. Dicke, Phys. Rev. 93, 99 (1954)

    Article  ADS  Google Scholar 

  8. F.A. Pinheiro, M. Rusek, A. Orlowski, B.A. van Tiggelen, Phys. Rev. E 69, 026605 (2004)

    Article  ADS  Google Scholar 

  9. A.A. Svidzinsky, Rev. A 85, 013821 (2012)

    Article  Google Scholar 

  10. T. Bienaimé, N. Piovella, R. Kaiser, Phys. Rev. Lett. 108, 123602 (2012)

    Article  ADS  Google Scholar 

  11. C.E. Máximo, N. Piovella, Ph. W. Courteille, R. Kaiser, R. Bachelard, Phys. Rev. A 92, 062702 (2015)

  12. M.O. Araujo, I. Kresic, R. Kaiser, W. Guerin, Phys. Rev. Lett. 117, 073002 (2016)

    Article  ADS  Google Scholar 

  13. S.J. Roof, K.J. Kemp, M.D. Havey, I.M. Sokolov, Phys. Rev. Lett. 117, 073003 (2016)

    Article  ADS  Google Scholar 

  14. P. Weiss, M.O. Araújo, R. Kaiser, W. Guerin, New J. Phys. 20, 063024 (2018)

    Article  ADS  Google Scholar 

  15. S.E. Skipetrov, I.M. Sokolov, M.D. Havey, Phys. Rev. A 94, 013825 (2016)

    Article  ADS  Google Scholar 

  16. L. Celardo, M. Angeli, R. Kaiser. arXiv:1702.04506

  17. V. Ernst, Z. Phys. 218, 1411 (1969)

    Google Scholar 

  18. E. Ressayre, A. Tallet, Phys. Rev. Lett. 37, 424 (1976)

    Article  ADS  Google Scholar 

  19. E. Ressayre, A. Tallet, Phys. Rev. A 15, 2410 (1977)

    Article  ADS  Google Scholar 

  20. E. Akkermans, A. Gero, R. Kaiser, Phys. Rev. Lett. 101, 103602 (2008)

    Article  ADS  Google Scholar 

  21. A. Gero, E. Akkermans, Phys. Rev. A 88, 023839 (2013)

    Article  ADS  Google Scholar 

  22. E. Abrahams, P.W. Anderson, D.C. Licciardello, T.V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979)

    Article  ADS  Google Scholar 

  23. E. Akkermans, A. Gero, Europhys. Lett. 101, 54003 (2013)

    Article  ADS  Google Scholar 

  24. P. Weiss, A. Cipris, M.O. Araújo, R. Kaiser, W. Guerin, Phys. Rev. A 100, 033833 (2019)

    Article  ADS  Google Scholar 

  25. K. Ellinger, J. Cooper, P. Zoller, Phys. Rev. A 49, 3909 (1994)

    Article  ADS  Google Scholar 

  26. M.J. Stephen, J. Chem. Phys. 40, 669 (1964)

    Article  ADS  Google Scholar 

  27. R.H. Lehmberg, Phys. Rev. A 2, 883 (1970)

    Article  ADS  Google Scholar 

  28. P.W. Milonni, P.L. Knight, Phys. Rev. A 10, 1096 (1974)

    Article  ADS  Google Scholar 

  29. J. Jackson, Classical Electrodynamics (Wiley, 1998)

  30. A. Gero, E. Akkermans, Phys. Rev. Lett. 96, 093601 (2006)

    Article  ADS  Google Scholar 

  31. A. Gero, E. Akkermans, Phys. Rev. A 75, 053413 (2007)

    Article  ADS  Google Scholar 

  32. S.E. Skipetrov, A. Goetschy, J. Phys. A Math. Theor. 44, 065102 (2011)

    Article  ADS  Google Scholar 

  33. The \(\delta \) function is considered as a limiting case of an even function peaked at zero. Thus, the integral of \(\delta (x)\) from 0 to infinity equals 1/2

  34. A. F. Ioffe, A. R. Regel, Prog. Semicond. 4, 237 (1960). For historical reasons mainly, the dimensionless quantity \(k_0l\) is often called the Ioffe-Regel number. Since this quantity is defined for resonance scattering, it applies to both ordered and disordered media

  35. E. Akkermans, G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University Press, Cambridge, 2007), Section 6.6

  36. S. E. Skipetrov, I. M. Sokolov, Phys. Rev. B 98, 064207 (2018). In three-dimensional media, disorder-driven localization of scalar waves should occur for \(k_0l<(k_0l)_{c}\), where \((k_0l)_{c}\) takes values from 0.3 to 1.2, depending on the density of scatterers

  37. G.-D. Lin, S.F. Yelin, Phys. Rev. A 85, 033831 (2012)

    Article  ADS  Google Scholar 

  38. G.-D. Lin, S.F. Yelin, Mol. Phys. 111, 1917 (2013)

    Article  ADS  Google Scholar 

  39. V.A. Marchenko, L.A. Pastur, Mat. Sb. USSR 1, 457 (1967)

    Article  Google Scholar 

  40. T. Kottos, M. Weiss, Phys. Rev. Lett. 89, 056401 (2002)

    Article  ADS  Google Scholar 

  41. M. Weiss, J.A. Méndez-Bermúdez, T. Kottos, Phys. Rev. B. 73, 045103 (2006)

    Article  ADS  Google Scholar 

  42. M. Gross, S. Haroche, Phys. Rep. 93, 301 (1982)

    Article  ADS  Google Scholar 

  43. T. Ando, Phys. Rev. B 40, 5325 (1989)

    Article  ADS  Google Scholar 

  44. S.N. Evangelou, Phys. Rev. Lett. 75, 2550 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LB performed the numerical simulations. LB and AG analyzed the data. EA and RK supervised the project, and all authors contributed to the writing of the paper.

Corresponding author

Correspondence to L. Bellando.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellando, L., Gero, A., Akkermans, E. et al. Roles of cooperative effects and disorder in photon localization: the case of a vector radiation field. Eur. Phys. J. B 94, 49 (2021). https://doi.org/10.1140/epjb/s10051-021-00054-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00054-6

Navigation