Skip to main content
Log in

Anisotropy-driven reversal of magnetisation in Blume–Capel ferromagnet: a Monte Carlo study

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The two-dimensional Spin-1 Blume–Capel ferromagnet is studied by Monte Carlo simulation with Metropolis algorithm. Starting from initial ordered spin configuration, the reversal of magnetisation is investigated in the presence of a magnetic field (h) applied in the opposite direction. The variations of the reversal time with the strength of single-site anisotropy are investigated in details. The exponential dependence was observed. The systematic variations of the mean reversal time with positive and negative anisotropy were found. The mean macroscopic reversal time was observed to be linearly dependent on a suitably defined microscopic reversal time. The saturated magnetisation \(M_f\) after the reversal was noticed to be dependent of the strength of anisotropy D. An interesting scaling relation was obtained, \(|M_f| \sim |h|^{\beta }f(D|h|^{-\alpha })\) with the scaling function of the form \(f(x)= \frac{1}{1+e^{(x-a)/b}}\). The temporal evolution of density of \(S_i^z=0\) (surrounded by all \(S_i^z=+1\)) is observed to be exponentially decaying. The growth of mean density of \(S_i^z=-1\) has been fitted in a function \(\rho _{-1}(t) \sim \frac{1}{a+e^{(t_c-t)/c}}\). The characteristic time shows \(t_c \sim e^{-rD}\) and a crossover in the rate of exponential falling is observed at \(D=1.5\). The metastable volume fraction has been found to obey the Avrami’s law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data used in the manuscript are available on request to Moumita Naskar.]

References

  1. S.N. Piramanayagam, T.C. Chong, Development in Data Storage: Material Perspective (Wiley, Amsterdam, 2011)

    Book  Google Scholar 

  2. E.D. Daniel, C.D. Mes, M.H. Clark, Magnetic recording: The first 100 years (Wiley, Amsterdam, 1998)

    Book  Google Scholar 

  3. R. Becker and W. D̈oring, Ann. Phys. (Leipzig) 416, 719 (1935)

  4. M. Grant, J.D. Gunton, Phys. Rev. B 32, 7299 (1985)

    Article  ADS  Google Scholar 

  5. P.A. Rikvold, H. Tomita, S. Miyashita, S.W. Sides, Phys. Rev. E 49, 5080 (1994)

    Article  ADS  Google Scholar 

  6. M. Acharyya, D. Stauffer, Eur. Phys. J. B. I 5, 571 (1998)

    Article  ADS  Google Scholar 

  7. A. Misra, B.K. Chakrabarti, Phys. A 246, 510 (1997)

    Article  Google Scholar 

  8. K. Binder, H. Müller-Krumbhaar, Phys. Rev. B 9, 2328 (1974)

    Article  ADS  Google Scholar 

  9. D. Hinzke, U. Nowak, Phys. Rev. B. 58, 265 (1998)

    Article  ADS  Google Scholar 

  10. H. Vehkamäki, I.J. Ford, Phys. Rev. E 59, 6483 (1999)

    Article  ADS  Google Scholar 

  11. A.N. Kolmogorov, Bull. Acad. Sci. USSR Ser. Math. 3, 355 (1937)

    Google Scholar 

  12. W.A. Johnson, P.A. Mehl, Trans. Am. Inst. Min. Metall. Eng. 135, 416 (1939)

    Google Scholar 

  13. M. Avrami, J. Chem. Phys. 7, 1103 (1939)

    Article  ADS  Google Scholar 

  14. M. Avrami, J. Chem. Phys. 8, 212 (1940)

    Article  ADS  Google Scholar 

  15. M. Avrami, J. Chem. Phys. 9, 177 (1941)

    Article  ADS  Google Scholar 

  16. W.R. Deskins, G. Brown, S.H. Thompson, P.A. Rikvold, Phys. Rev. B 84, 094431 (2011)

    Article  ADS  Google Scholar 

  17. M. Acharyya, Phys. A 403, 94 (2014)

    Article  Google Scholar 

  18. A. Dhar, M. Acharyya, Commun. Theor. Phys. 66, 563 (2016)

    Article  ADS  Google Scholar 

  19. R. Dutta, M. Acharyya, A. Dhar, Heliyon 4, e00892 (2018)

    Article  Google Scholar 

  20. M. Naskar, M. Acharyya, Phys. A 551, 124583 (2020)

    Article  Google Scholar 

  21. M. Blume, Phys. Rev. 141, 517 (1966)

    Article  ADS  Google Scholar 

  22. H. Capel, Physica. 32, 966 (1966)

    Article  ADS  Google Scholar 

  23. E.N.M. Cirillo, E. Olivieri, J. Stat. Phys. 83, 473 (1996)

    Article  ADS  Google Scholar 

  24. E. Costabile, M.A. Amazonas, J.R. Viana, J.R. de Sousa, Phys. Lett. A 376, 2922 (2012)

    Article  ADS  Google Scholar 

  25. C.J. Silva, A.A. Caparica, J.A. Plascak, Phys. Rev. E 73, 036702 (2006)

    Article  ADS  Google Scholar 

  26. G. Gulpinar, E. Vatansever, M. Agartioglu, Phys. A 391, 3574 (2012)

    Article  Google Scholar 

  27. M. Acharyya, A. Halder, J. Magn. Magn. Mater. 426, 53 (2017)

    Article  ADS  Google Scholar 

  28. Y. Yamamoto, K. Park, Phys. Rev. E 88, 012110 (2013)

    Article  ADS  Google Scholar 

  29. J.M. Yeomans, M.E. Fisher, Phys. Rev. B 24, 2825 (1981)

    Article  ADS  Google Scholar 

  30. W. Kwak, J. Jeong, J. Lee, D.-H. Kim, Phys. Rev. E 92, 022134 (2015)

    Article  ADS  Google Scholar 

  31. J. Zierenberg, N.G. Fytas, M. Weigel, W. Janke, A. Malakis, Eur. Phys. J. Spec. Topics 226, 789 (2017)

    Article  ADS  Google Scholar 

  32. N.G. Fytas, J. Zierenberg, P.E. Theodorakis, M. Weigel, W. Janke, A. Malakis, Phys. Rev. E 97, 040102(R) (2018)

    Article  ADS  Google Scholar 

  33. E. Vatansever, Z.D. Vatansever, P.E. Theodorakis, N.G. Fytas, Phys. Rev. E 102, 062138 (2020)

    Article  ADS  Google Scholar 

  34. Sumedha, N.K. Jana J. Phys. : Math. Theor. 50, 015003 (2017)

    Article  ADS  Google Scholar 

  35. W. Selke, J. Oitmaa, J. Phys.: Condens. Matter 22, 076004 (2010)

    ADS  Google Scholar 

  36. R. Masrour, A. Jabar, L. Bahmad, M. Hamedoun, A. Benyoussef, J. Magn. Magn. Mater. 421, 76 (2017)

    Article  ADS  Google Scholar 

  37. K. Binder, D.W. Heermann, Monte Carlo Simulation in Statistical physics, 2nd edn. (Springer, Berlin, 1992)

    Book  Google Scholar 

  38. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, J. Chem. Phys. 21(6) (1953)

  39. P. Butera, M. Pernici, Phys. A 507, 22 (2018)

    Article  MathSciNet  Google Scholar 

  40. M. Naskar, M. Acharyya, Phys. A 568, 125747 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

MA would like to acknowledge FRPDF research grant provided by Presidency University. MN would like to acknowledge Swami Vivekananda Scholarship (SVMCMS) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muktish Acharyya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naskar, M., Acharyya, M. Anisotropy-driven reversal of magnetisation in Blume–Capel ferromagnet: a Monte Carlo study. Eur. Phys. J. B 94, 36 (2021). https://doi.org/10.1140/epjb/s10051-021-00052-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00052-8

Navigation