Skip to main content
Log in

Hund-Heisenberg model in superconducting infinite-layer nickelates

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We theoretically investigate the unconventional superconductivity in the newly discovered infinite-layer nickelates Nd1−xSrxNiO2 based on a two-band model. By analyzing the transport experiments, we propose that the doped holes dominantly enter the Ni dxy or/and d3z2−r2 orbitals as charged carriers, and form a conducting band. Via the onsite Hund coupling, the doped holes are coupled to the Ni localized holes in the dx2−y2 orbital band. We demonstrate that this two-band model could be further reduced to a Hund-Heisenberg model. Using the reduced model, we show the non-Fermi liquid state above the critical Tc could stem from the carriers coupled to the spin fluctuations of the localized holes. In the superconducting phase, the short-range spin fluctuations mediate the carriers into Cooper pairs and establish dx2−y2-wave superconductivity. We further predict that the doped holes ferromagnetically coupled with the local magnetic moments remain itinerant even at very low temperature, and thus the pseudogap hardly emerges in nickelates. Our work provides a new superconductivity mechanism for strongly correlated multi-orbital systems and paves a distinct way to exploring new superconductors in transition or rare-earth metal oxides.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.G. Bednorz, K.A. Müller, Z. Phys. B 64, 189 (1986)

    Article  ADS  Google Scholar 

  2. F. Steglich, J. Aarts, C.D. Bredl, W. Lieke, D. Meschede, W. Franz, H. Schäfer, Phys. Rev. Lett. 43, 1892 (1979)

    Article  ADS  Google Scholar 

  3. P.A. Lee, N. Nagaosa, X.G. Wen, Rev. Mod. Phys. 78, 17 (2006)

    Article  ADS  Google Scholar 

  4. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008)

    Article  Google Scholar 

  5. Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. Bednorz, F. Lichtenberg, Nature 372, 532 (1994)

    Article  ADS  Google Scholar 

  6. D. Li, K. Lee, B.Y. Wang, M. Osada, S. Crossley, H.R. Lee, Y. Cui, Y. Hikita, H.Y. Hwang, Nature 572, 624 (2019)

    Article  ADS  Google Scholar 

  7. V.I. Anisimov, D. Bukhvalov, T.M. Rice, Phys. Rev. B 59, 7901 (1999)

    Article  ADS  Google Scholar 

  8. K.W. Lee, W.E. Pickett, Phys. Rev. B 70, 165109 (2004)

    Article  ADS  Google Scholar 

  9. Y.J. Yan, M.Q. Ren, H.C. Xu, B.P. Xie, R. Tao, H.Y. Choi, N. Lee, Y.J. Choi, T. Zhang, D.L. Feng, Phys. Rev. X 5, 041018 (2015)

    Google Scholar 

  10. Y.K. Kim, N. Sung, J. Denlinger, B. Kim, Nature Phys. 12, 37 (2016)

    Article  ADS  Google Scholar 

  11. J. Chaloupka, G. Khaliullin, Phys. Rev. Lett. 100, 016404 (2008)

    Article  ADS  Google Scholar 

  12. U. Schwingenschlögl, C. Schuster, R. Frésard, Ann. der Physik 18, 107 (2009)

    Article  ADS  Google Scholar 

  13. P. Hansmann, X. Yang, A. Toschi, G. Khaliullin, O.K. Andersen, K. Held, Phys. Rev. Lett. 103, 016401 (2009)

    Article  ADS  Google Scholar 

  14. A. Ikeda, Y. Krockenberger, H. Irie, M. Naito, H. Yamamoto, Appl. Phys. Express 9, 061101 (2016)

    Article  ADS  Google Scholar 

  15. M. Kawai, S. Inoue, M. Mizumaki, N. Kawamura, N. Ichikawa, Y. Shimakawa, Appl. Phys. Lett. 94, 082102 (2009)

    Article  ADS  Google Scholar 

  16. D. Kaneko, K. Yamagishi, A. Tsukada, T. Manabe, M. Naito, Physica C 469, 936 (2009)

    Article  ADS  Google Scholar 

  17. S. Ryee, H. Yoon, T.J. Kim, M.Y. Jeong, M.J. Han, Phys. Rev. B 101, 064513 (2020)

    Article  ADS  Google Scholar 

  18. J. Hirsch, F. Marsiglio, Physica C (Amsterdam) 566, 1353534 (2019)

    Article  ADS  Google Scholar 

  19. A.S. Botana, M.R. Norman, Phys. Rev. X 10, 11024 (2020)

    Google Scholar 

  20. M. Hayward, M. Green, M. Rosseinsky, J. Sloan, J. Am. Chem. Soc. 121, 8843 (1999)

    Article  Google Scholar 

  21. M. Hepting, D. Li, C.J. Jia, H. Lu, E. Paris, Y. Tseng, X. Feng, M. Osada, E. Been, Y. Hikita et al., Nat. Mater. 19, 381 (2020)

    Article  ADS  Google Scholar 

  22. H. Sakakibara, H. Usui, K. Suzuki, T. Kotani, H. Aoki, K. Kuroki, Phys. Rev. Lett. 125, 077003 (2020)

    Article  ADS  Google Scholar 

  23. J. Gao, Z. Wang, C. Fang, H. Weng, National Science Review (2020), https://doi.org/10.1093/nsr/nwaa218

  24. F. Bernardini, V. Olevano, A. Cano, Phys. Rev. Res. 2, 013219 (2020)

    Article  Google Scholar 

  25. P. Jiang, L. Si, Z. Liao, Z. Zhong, Phys. Rev. B 100, 201106(R) (2019)

    Article  ADS  Google Scholar 

  26. M. Hayward, M. Rosseinsky, Solid State Sci. 5, 839 (2003)

    Article  ADS  Google Scholar 

  27. H. Zhang, L. Jin, S. Wang, B. Xi, X. Shi, F. Ye, J.W. Mei, Phys. Rev. Res. 2, 013214 (2020)

    Article  Google Scholar 

  28. X. Wu, D.D. Sante, T. Schwemmer, W. Hanke, H.Y. Hwang, S. Raghu, R. Thomale, Phys. Rev. B 101, 060504 (2020)

    Article  ADS  Google Scholar 

  29. Y. Nomura, M. Hirayama, T. Tadano, Y. Yoshimoto, K. Nakamura, R. Arita, Phys. Rev. B 100, 205138 (2019)

    Article  ADS  Google Scholar 

  30. N. Singh, arXiv:1909.07688 (2019)

  31. M.Y. Choi, K.W. Lee, W.E. Pickett, Phys. Rev. B 101, 020503 (2020)

    Article  ADS  Google Scholar 

  32. M. Jiang, M. Berciu, G.A. Sawatzky, Phys. Rev. Lett. 124, 207004 (2020)

    Article  ADS  Google Scholar 

  33. Y.H. Zhang, A. Vishwanath, Phys. Rev. Res. 2, 023112 (2020)

    Article  Google Scholar 

  34. L.H. Hu, C. Wu, Phys. Rev. Res. 1, 032046 (2019)

    Article  Google Scholar 

  35. P. Werner, S. Hoshino, Phys. Rev. B 101, 041104 (2020)

    Article  ADS  Google Scholar 

  36. G.M. Zhang, Y.F. Yang, F.C. Zhang, Phys. Rev. B 101, 020501 (2020)

    Article  ADS  Google Scholar 

  37. Y. Fu, L. Wang, H. Cheng, S. Pei, X. Zhou, J. Chen, S. Wang, R. Zhao, W. Jiang, C. Liu et al., arXiv:1911.03177 (2019)

  38. Q. Li, C. He, J. Si, X. Zhu, Y. Zhang, H.H. Wen, Nat. Commun. 1, 1 (2020)

    Article  Google Scholar 

  39. X. Zhou, Z. Feng, P. Qin, H. Yan, S. Hu, H. Guo, X. Wang, H. Wu, X. Zhang, H. Chen et al., Rare Met. 39, 368 (2020)

    Article  Google Scholar 

  40. L. Si, W. Xiao, J. Kaufmann, J.M. Tomczak, Y. Lu, Z. Zhong, K. Held, Phys. Rev. Lett. 124, 166402 (2020)

    Article  ADS  Google Scholar 

  41. F. Lechermann, Phys. Rev. B 101, 081110 (2020)

    Article  ADS  Google Scholar 

  42. T.H. Lee, A. Chubukov, H. Miao, G. Kotliar, Phys. Rev. Lett. 121, 187003 (2018)

    Article  ADS  Google Scholar 

  43. A. Georges, L.d. Medici, J. Mravlje, Annu. Rev. of Condens. Matter Phys. 4, 137 (2013)

    Article  ADS  Google Scholar 

  44. K. Haule, G. Kotliar, New J. Phys. 11, 025021 (2009)

    Article  ADS  Google Scholar 

  45. P. Werner, E. Gull, M. Troyer, A.J. Millis, Phys. Rev. Lett. 101, 166405 (2008)

    Article  ADS  Google Scholar 

  46. J. Chang, J. Zhao, Eur. Phys. J. B 90, 154 (2017)

    Article  ADS  Google Scholar 

  47. J. Zaanen, A.M. Oleś, Phys. Rev. B 37, 9423 (1988)

    Article  ADS  Google Scholar 

  48. S.M. Hayden, G. Aeppli, H. Mook, D. Rytz, M.F. Hundley, Z. Fisk, Phys. Rev. Lett. 66, 821 (1991)

    Article  ADS  Google Scholar 

  49. B. Keimer, R.J. Birgeneau, A. Cassanho, Y. Endoh, R.W. Erwin, M.A. Kastner, G. Shirane, Phys. Rev. Lett. 67, 1930 (1991)

    Article  ADS  Google Scholar 

  50. J.M. Tranquada, P.M. Gehring, G. Shirane, S. Shamoto, M. Sato, Phys. Rev. B 46, 5561 (1992)

    Article  ADS  Google Scholar 

  51. F.C. Zhang, T.M. Rice, Phys. Rev. B 37, 3759 (1988)

    Article  ADS  Google Scholar 

  52. P. Coleman, inHandbook of Magnetism and Advanced Magnetic Materials, edited by H. Kronmueller, S. Parkin (John Wiley and Sons, New York, 2007), Vol. 1, pp. 95–148

  53. D.J. Scalapino, E. Loh, J.E. Hirsch, Phys. Rev. B 34, 8190 (1986)

    Article  ADS  Google Scholar 

  54. N. Bickers, D. Scalapino, R. Scalettar, Int. J. Mod. Phys. B 01, 687 (1987)

    Article  ADS  Google Scholar 

  55. M. Inui, S. Doniach, P.J. Hirschfeld, A.E. Ruckenstein, Phys. Rev. B 37, 2320 (1988)

    Article  ADS  Google Scholar 

  56. C. Dong, J.K. Liang, G.C. Che, S.S. Xie, Z.X. Zhao, Q.S. Yang, Y.M. Ni, G.R. Liu, Phys. Rev. B 37, 5182 (1988)

    Article  ADS  Google Scholar 

  57. G. Kotliar, J. Liu, Phys. Rev. B 38, 5142 (1988)

    Article  ADS  Google Scholar 

  58. P. Monthoux, A.V. Balatsky, D. Pines, Phys. Rev. Lett. 67, 3448 (1991)

    Article  ADS  Google Scholar 

  59. T. Moriya, Y. Takahashi, K. Ueda, J. Phys. Soc. Jpn. 59, 2905 (1990)

    Article  ADS  Google Scholar 

  60. A.J. Millis, H. Monien, D. Pines, Phys. Rev. B 42, 167 (1990)

    Article  ADS  Google Scholar 

  61. A. Chubukov, D. Pines, J. Schmalian, inSuperconductivity, edited by K. Bennemann, J. Ketterson (Springer, Berlin, Heidelberg, 2008), pp. 1349–1413

  62. D.J. Scalapino, Rev. Mod. Phys. 84, 1383 (2012)

    Article  ADS  Google Scholar 

  63. J. Böker, M.A. Sulangi, A. Akbari, J.C.S. Davis, P.J. Hirschfeld, I.M. Eremin, Phys. Rev. B 101, 214505 (2020)

    Article  ADS  Google Scholar 

  64. Y. Gu, S. Zhu, X. Wang, J. Hu, H. Chen, Commun. Phys. 3, 84 (2020)

    Article  Google Scholar 

  65. D. Li, B.Y. Wang, K. Lee, S.P. Harvey, M. Osada, B.H. Goodge, L.F. Kourkoutis, H.Y. Hwang, Phys. Rev. Lett. 125, 027001 (2020)

    Article  ADS  Google Scholar 

  66. G. Kaindl, O. Strebel, A. Kolodziejczyk, W. Schäfer, R. Kiemel, S. Lösch, S. Kemmler-Sack, R. Hoppe, H. Müller, D. Kissel, Physica B 158, 446 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chang.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, J., Zhao, J. & Ding, Y. Hund-Heisenberg model in superconducting infinite-layer nickelates. Eur. Phys. J. B 93, 220 (2020). https://doi.org/10.1140/epjb/e2020-10343-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10343-7

Keywords

Navigation