Skip to main content
Log in

First-principles study of electronic and magnetic properties of nickel doped hexagonal boron nitride (h-BN)

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We have studied the electronic and magnetic properties of Nickel doped hexagonal boron nitride (h-BN) by using spin polarized density functional theory (DFT) method of calculations within DFT-D2 approach. The calculations have shown that Nickel doped in Boron (B) site of h-BN (NiB) has no gap for up spin electronic states but has definite optical band gap (0.98 eV) for down spin states indicating that the material is half metallic in nature. However, Ni doped on Nitrogen (N) site of h-BN (NiN) shows certain optical band gap for both the spin orientations, (1.04 eV) for up spin states and (2.60 eV) for down spin states. This band structure resembles with a semiconductor in nature with overall energy gap, Eg = 0.72 eV. The values of formation energy on B site and N site are found to be 5.73 and 7.73 eV respectively indicating that the defect at B site is more probable. The density of states (DOS) calculations find asymmetric distribution of DOS for spin-up and spin-down electrons at both the sites. This implies that the doped h-BN system is magnetic.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Ooi, A. Rairkar, L. Lindsley, J.B. Adams, J. Phys.: Condens. Matter 18, 97 (2006)

    ADS  Google Scholar 

  2. J. Eichler, C. Lesniak, J. Eur. Ceram. Soc. 28, 1105 (2008)

    Article  Google Scholar 

  3. K. Watanabe, T. Taniguchi, H. Kanda, Nat. Mater. 3, 404 (2004)

    Article  ADS  Google Scholar 

  4. B. Hang, H. Lee, Phy. Rev. B 86, 245406 (2012)

    Article  ADS  Google Scholar 

  5. J. Li, G. Gui, J. Zhong, J. Appl. Phys. 104, 094311 (2008)

    Article  ADS  Google Scholar 

  6. A. Abdellaoui, A. Bath, B. Bouchikhi, O. Baehr, Mater. Sci. Eng. B 47, 257 (1997)

    Article  Google Scholar 

  7. V. Solozhenko, A.G. Lazarenko, J.-P. Petitet, A.V. Kanaev, J. Phys. Chem. Solids 62, 1331 (2001)

    Article  ADS  Google Scholar 

  8. K. Watanabe, T. Taniguchi, H Kanda, Nat. Photonics 3, 591 (2009)

    Article  ADS  Google Scholar 

  9. K. Watanabe, T. Taniguchi, H. Kanda, Nat. Mater. 3, 404 (2004)

    Article  ADS  Google Scholar 

  10. Y.-j. Liu, B. Gao, H.-m. Wang, J.X. Zhao, Phys. Lett. A 378, 2989 (2014)

    Article  ADS  Google Scholar 

  11. S. Azevedo, J.R. Kaschny, C.M. Ci de Castilho, F. de Brito Mota, Eur. Phys. J. B 67, 507 (2009)

    Article  ADS  Google Scholar 

  12. S. Li, M. Zhou, M. Li, G. Lu, X. Wang, F. Zheng, P. Zhang, J. Appl. Phys. 123, 095110 (2018)

    Article  ADS  Google Scholar 

  13. S. Li, M. Zhou, M. Li, X. Wang, F. Zheng, P. Zhang, Mater. Res. Express 5, 055041 (2018)

    Article  ADS  Google Scholar 

  14. M.R.A. Monazam, U. Ludacka, H.P. Komsa, J. Kotakoski, Appl. Phys. Lett. 115, 071604 (2019)

    Article  ADS  Google Scholar 

  15. J. Zhang, B. Zhang, Y. Yu, C.M. Wang, EPL 119, 37001 (2020)

    Article  Google Scholar 

  16. I. Choudhuri, B. Pathak, Chem. Phys. Chem. 153, (2017)

  17. I. Levine,Quantum chemistry (Pearson Prentice Hall, Upper Saddle River, NJ, 2009)

  18. W. Koch, M.C. Holthausen,A chemist’s guide to density functional theory (Wiley-VCH Verlag GmbH, 2 ed., 2001)

  19. R.G. Parr, W. Yang,Density functional theory of atoms and molecules (Oxford University Press, New York, 1989)

  20. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo et al., J. Phys.: Condens. Mat. 21, 395502 (2009)

    Google Scholar 

  21. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

    Article  ADS  Google Scholar 

  22. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  23. C. Kittel,Introduction to solid state physics, 8th edn. (Wiley India (Pvt.) Ltd., 2013)

  24. B.G. Pfrommer, M. Cote, S.G. Louie, M.L. Cohen, J. Comput. Phys. 131, 233 (1997)

    Article  ADS  Google Scholar 

  25. N. Marzari, D. Vanderbilt, A.D. Vita, M. Payne, Phys. Rev. Lett. 82, 3296 (1999)

    Article  ADS  Google Scholar 

  26. X. Wu, X.C. Zeng, J. Chem. Phys. 125, 044711 (2006)

    Article  ADS  Google Scholar 

  27. L. Song, L. Ci, H.L. et al., Am. Chem. Soc. 10, 3209 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayan Prasad Adhikari.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pantha, N., Bissokarma, P. & Adhikari, N.P. First-principles study of electronic and magnetic properties of nickel doped hexagonal boron nitride (h-BN). Eur. Phys. J. B 93, 164 (2020). https://doi.org/10.1140/epjb/e2020-10186-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10186-2

Keywords

Navigation