Skip to main content
Log in

Resilience of networks of multi-stable chaotic systems to targetted attacks

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Predictions of the resilience of dynamical networks is a fundamental challenge in physical, biological, environmental, and social sciences. The resilience of the network depends crucially on both network properties, as well as the dynamical behaviour of the interactive elements. While it is expected that nodes of the highest centrality will play an essential role in maintaining the robustness of the network, we still do not have a universal result that can explain how the interplay of nodal dynamics and connection properties affect network resilience. So to understand this aspect we examine the collective dynamics of multi-stable Duffing oscillators coupled in a variety of network topologies, in response to different classes of strong localized perturbations. Our investigations span both ring networks where all nodes have same features, as well as star networks where the hub and peripheral nodes have markedly different centrality measures. Further we also consider heterogeneous scale-free networks which bridge these two contrasting scenarios with nodes having different distributions of different centrality properties. The multi-stable Duffing oscillator offers a particularly fertile test-bed as it has co-existing chaotic and limit cycle attractors, marked by complex basin boundaries. In order to assess the robustness of this network comprised of complex multi-stable dynamical elements, we use a variant of multi-node Basin Stability, where a large perturbation is given to a specified set of nodes, chosen randomly or preferentially according to the network properties. We find that the robustness of the network depends on the centrality of the perturbed node, with betweenness centrality being more important than degree or closeness centrality in determining resilience. Further, we demonstrate that ring and star networks of multi-stable limit cycles are more robust than networks of multi-stable chaotic attractors. However, counter-intuitively we find that scale-free networks of multi-stable limit cycle oscillators are less robust than networks of multi-stable chaotic attractors, under certain classes of perturbations. Thus we demonstrate that, in addition to connection properties, the non-trivial interplay of nodal dynamics and type of perturbation is also crucial for assessing the tolerance of different types of complex dynamical networks to diverse kinds of strong targetted attacks.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Barzel, A.-L. Barabási, Nat. Phys. 9, 673 (2013)

    Article  Google Scholar 

  2. U. Harush, B. Barzel, Nat. Commun. 8, 2181 (2017)

    Article  ADS  Google Scholar 

  3. N.K. Kamal, S. Sinha, Commun. Nonlinear Sci. Numer. Simul. 22, 314 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  4. C. Meena, K. Murali, S. Sinha Int. J. Bifurcat. Chaos 26, 1630023 (2016)

    Article  Google Scholar 

  5. C. Hens, U. Harush, S. Haber, R. Cohen, B. Barzel, Nat. Phys. 15, 403 (2019)

    Article  Google Scholar 

  6. N. Lahav, I. Sendiña-Nadal, C. Hens, B. Ksherim, B. Barzel, R. Cohen, S. Boccaletti, Phys. Rev. E 98, 052204 (2018)

    Article  MathSciNet  Google Scholar 

  7. A. Choudhary, C. Mitra, V. Kohar, S. Sinha, J. Kurths, Chaos 27, 111101 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  8. P. Moitra, S. Sinha, Chaos 29, 023131 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  9. S.S. Chaurasia, M. Yadav, S. Sinha Phys. Rev. E 98, 032223 (2018)

    Article  ADS  Google Scholar 

  10. U.K. Verma, S.S. Chaurasia, S. Sinha, Phys. Rev. E 100, 032203 (2019)

    Article  ADS  Google Scholar 

  11. M.E.J. Newman, Social Netw. 27, 39 (2005)

    Article  Google Scholar 

  12. A. Bavelas, J. Acoust. Soc. Am. 22, 725 (1950)

    Article  ADS  Google Scholar 

  13. A.N. Pisarchik, U. Feudel, Phys. Rep. 540, 167 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  14. S.J. Schiff, K. Jerger, D.H. Duong, T. Chang, M.L. Spano, W.L. Ditto, Nature 370, 615 (1994)

    Article  ADS  Google Scholar 

  15. J. Foss, A. Longtin, B. Mensour, J. Milton, Phys. Rev. Lett. 76, 708 (1996)

    Article  ADS  Google Scholar 

  16. R.M. May, Nature 269, 471 (1977)

    Article  ADS  Google Scholar 

  17. P.M. Groffman, J.S. Baron, T. Blett, A.J. Gold, I. Goodman, L.H. Gunderson, B.M. Levinson, A.M. Palmer, H.W. Hans, G.D. Peterson et al., Ecosystems 9, 1 (2006)

    Article  Google Scholar 

  18. F. Prengel, A. Wacker, E. Schöll, Phys. Rev. B 50, 1705 (1994)

    Article  ADS  Google Scholar 

  19. L.L. Bonilla, R. Escobedo, G.D. Acqua, Phys. Rev. B 73, 115341 (2006)

    Article  ADS  Google Scholar 

  20. M. Brambilla, L.A. Lugiato, V. Penna, F. Prati, C. Tamm, C.O. Weiss, Phys. Rev. A 43, 5114 (1991)

    Article  ADS  Google Scholar 

  21. A. Prasad, Y.C. Lai, A. Gavrielides, V. Kovanis, Phys. Lett. A 314, 44 (2003)

    Article  ADS  Google Scholar 

  22. C. Meena, S. Kumari, A. Sharma, S. Sinha, Choas Solitons Fractals 104, 668 (2017)

    Article  ADS  Google Scholar 

  23. C. Meena, E. Surovyatkina, S. Sinha, Pramana, Indian Acad. Sci. 1, 171 (2017)

    Google Scholar 

  24. C.N. Ngonghala, U. Feudel, K. Showalter, Phys. Rev. E. 83, 056206 (2011)

    Article  ADS  Google Scholar 

  25. J.L. Hudson, J.C. Mankin, J. Chem. Phys. 74, 6171 (1981)

    Article  ADS  Google Scholar 

  26. E. Ullner, A. Koseska, J. Kurths, E. Volkov, H. Kantz, J. García-Ojalvo, Phys. Rev. E 78, 031904 (2008)

    Article  ADS  Google Scholar 

  27. A. Koseska, E. Volkov, A. Zaikin, J. Kurths, Phys. Rev. B 75, 031916 (2007)

    Article  ADS  Google Scholar 

  28. S. Sinha, N. Gupte, Phys. Rev. E 64, 015203 (2001)

    Article  ADS  Google Scholar 

  29. K. Murali, S. Sinha, V. Kohar, B. Kia, W.L. Ditto, PLoS One 13, e0209037 (2018)

    Article  Google Scholar 

  30. C. Meena, P.D. Rungta, S. Sinha, PLoS One 12, e0183251 (2017)

    Article  Google Scholar 

  31. C. Mitra, A. Choudhary, S. Sinha, J. Kurths, R.V. Donner, Phys. Rev. E 95, 032317 (2016)

    Article  ADS  Google Scholar 

  32. P.D. Rungta, C. Meena, S. Sinha, Phys. Rev. E 98, 022314 (2018)

    Article  ADS  Google Scholar 

  33. P.G. Lind, J. Corte-Real, J.A.C. Gallas, Phys. Rev. E 69, 026209 (2004)

    Article  ADS  Google Scholar 

  34. A. Chudzik, P. Perlikowski, A. Stefanski, T. Kapitaniak, Int. J. Bif. Chaos 21, 7 (2011)

    Article  Google Scholar 

  35. H.J. Korsch, H.J. Jodl, T. Hartmann,The Duffing Oscillator (Springer, Berlin, Heidelberg, 2008)

  36. N.B. Tufillaro, Am. J. Phys. 57, 408 (1989)

    Article  ADS  Google Scholar 

  37. E.H. Dowell, C. Pezeshki, J. Appl. Mech. 53, 5 (1986)

    Article  ADS  Google Scholar 

  38. E. Tamaseviciute, A. Tamasevicius, G. Mykolaitis, S. Bumeliene, E. Lindberg, Nonlin. Anal: Model. Control 13, 241 (2008)

    Article  Google Scholar 

  39. H.G. Enjieu Kadji, B.R. Nana Nbendjo, J.B. Chabi Orou, P.K. Talla, Phys. Plasmas 15, 032308 (2008)

    Article  ADS  Google Scholar 

  40. A.-L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  41. R. Cohen, S. Havlin,Complex networks: structure, robustness and function (Cambridge University Press, 2010)

  42. P.J. Menck, J. Heitzig, N. Marwan, J. Kurths, Nat. Phys. 9, 89 (2013)

    Article  Google Scholar 

  43. M.F. Wolff, P.G. Lind, P. Maass, Chaos 28, 103120 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  44. M.F. Wolff, K. Schmietendorf, P.G. Lind, O. Kamps, J. Peinke, P. Maass, Chaos DMPG2019, 103149 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudeshna Sinha.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, C., Rungta, P.D. & Sinha, S. Resilience of networks of multi-stable chaotic systems to targetted attacks. Eur. Phys. J. B 93, 210 (2020). https://doi.org/10.1140/epjb/e2020-10180-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10180-8

Keywords

Navigation