Skip to main content

Advertisement

Log in

Optoelectronic pressure dependent study of alkaline earth based zirconates AZrO3 (A = Ca, Ba, Sr) using ab-initio calculations

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The physical properties of alkaline-earth zirconates AZrO3 (A = Ca, Ba, Sr) are revealed using density functional theory (DFT) based FP-LAPW+lo approach. The present study investigates the structural, optoelectronic, and thermoelectric features, which are elucidated using GGA-PBEsol functional. The changing A cations from Ba to Sr to Ca result in increasing lattice constant comparable with experimental data and reducing bulk modulus. The CaZrO3 exhibits comparatively higher stiffness or hardness than that of the SrZrO3 and BaZrO3. The applied pressure improves mechanical stability by increasing ductility. Moreover, electronic structures are computed under varying pressures 0–30 GPa. All three compounds show indirect bandgap (Γ–M) up to 20 GPa, and the transition to direct bandgap (Γ–Γ) is illustrated at 30 GPa. Consequently, the significance of optoelectronic applications is revealed. The pressure-dependent various optical parameters are also explored and validation of Penn’s model, transparency, and maximum reflectivity at specific energy ranges expose their possible commercial candidature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.R. Shein, V.L. Kozhevnikov, A.L. Ivanovskii, Solid State Sci. 10, 217 (2008)

    ADS  Google Scholar 

  2. K. Hong, S.H. Kim, Y.J. Heo, Y.U. Kwon, Solid State Commun. 123, 305 (2008)

    ADS  Google Scholar 

  3. C.M.I. Okoy, J. Phys.: Condens. Matter 15, 5945 (2003)

    ADS  Google Scholar 

  4. Y.S. Lee, J.S. Lee, T.W. Noh, D.Y. Byun, K.S. Yoo, K. Yamaura, E.T. Muromachi, Phys. Rev. B 67, 113101 (2003)

    ADS  Google Scholar 

  5. R. Pazik, R. Tekoriute, S. Hakansson, R. Wiglusz, W. Strek, G.A. Seisenbaeva et al., Chem. Eur. J. 15, 6820 (2009)

    Google Scholar 

  6. J.A. Enterkin, W. Setthapun, J.W. Elam, S.T. Christensen, F.A. Rabuffetti, L.D. Marks, et al., ACS Catal. 1, 629 (2011)

    Google Scholar 

  7. M. Misono, Stud. Surf. Sci. Catal. 176, 97 (2013)

    Google Scholar 

  8. L. Bi, E. Traversa, J. Mater. Res. 29, 1 (2014)

    ADS  Google Scholar 

  9. W. Wang, M.O. Tade, Z. Shao, Chem. Soc. Rev. 44, 5371 (2015)

    Google Scholar 

  10. E. Grabowska, Appl. Catal. B Env. 186, 97 (2016)

    Google Scholar 

  11. J.F. Nye,Physical Properties of Crystals: their Representation by Tensorsand Matrices (Clarendon Press, New York, Oxford, 1985)

  12. S.D. Meetei, S.D. Singh, V. Sudarshan, J. Alloys Compd. 514, 174 (2012)

    Google Scholar 

  13. R. Gillani, B. Ercan, A. Qiao, T.J. Webster, Int. J. Nanomed. 5, 1 (2010)

    Google Scholar 

  14. Y.A. Khatatbeh, K.K.M. Lee, B. Kiefer, Phys. Rev. B 81, 214102 (2010)

    ADS  Google Scholar 

  15. D.E. Harrison, N.T. Mclamed, J. Electrochem. Soc. 110, 23 (1963)

    ADS  Google Scholar 

  16. A.A. Khosravi, M. Kundu, B.A. Kuruvilla, Appl. Phys. Lett. 67, 2506 (1995)

    ADS  Google Scholar 

  17. F. Gu, M.K. Lu, S.F. Wang, Y.X. Qi, C.F. Song, G.J. Zhou et al. Appl. Phys. A 78, 1059 (2004)

    ADS  Google Scholar 

  18. N. Kurita, N. Fukatsu, K. Ito, T. Ohashi, J. Electrochem. Soc. 142, 1552 (1995)

    ADS  Google Scholar 

  19. N. Sata, K. Hiramoto, M. Ishigame, S. Hosoya, N. Niimura, S. Shin, Phys. Rev. B 54, 15795 (1996)

    ADS  Google Scholar 

  20. T. Higuchi, T. Tsukamoto, N. Sata, K. Hiramoto, M. Ishigame, S. Shin, Jpn. J. Appl. Phys. 40, 4162 (2011)

    ADS  Google Scholar 

  21. R. Droopad, Z. Yu, J. Ramdani, L. Hilt, J. Curless, C. Overgaard et al., Mater. Sci. Eng. B 87, 292 (2001)

    Google Scholar 

  22. T. Schober, J. Friedrich, JB. Condon, Solid State Ion. 77, 175 (1995)

    Google Scholar 

  23. H. Yugami, S. Matsuo, M. Ishigame, Solid State Ionic 77, 195 (1995)

    Google Scholar 

  24. H. Mizoguchi, P.M. Woodward, C.H. Park, D.A. Keszler, J. Am. Chem. Soc. 126, 9796 (2004)

    Google Scholar 

  25. R.S. Andre, S.M. Zanetti, J.A. Varela, E. Longo, Ceramics Int. 40, 16627 (2014)

    Google Scholar 

  26. X. Liu, J. Zhang, X. Ma, H. Sheng, P. Feng, L. Shi, R. Hu, Y. Wang, J. Alloys Compd. 550, 451 (2013)

    Google Scholar 

  27. Y. Shimizu, S. Sakagami, K. Goto, Y. Nakachi, K. Ueda, Mater. Sci. Eng. B 161, 100 (2009)

    Google Scholar 

  28. H. Zhang, X. Fu, S. Niu, Q. Xin, J. Luminescence 128, 1348 (2008)

    ADS  Google Scholar 

  29. H. Zhang, X. Fu, S. Niu, Q. Xin, J. Alloys Compd. 459, 103 (2008)

    Google Scholar 

  30. P. Stoch, J. Szczerba, J. Lis, D. Madej, Z. Pedzich, J. Eur. Ceram. Soc. 32, 665 (2012)

    Google Scholar 

  31. M.G. Brik, C.G. Ma, V. Krasnenko, Surf. Sci. 608, 146 (2013)

    ADS  Google Scholar 

  32. A.L. Ibiapino, L.P. Figueiredo, G.E. Lascalea, R.J. Prado, Química Nova 36, 762 (2013)

    Google Scholar 

  33. Z.F. Hou, Physica B 403, 2624 (2008)

    ADS  Google Scholar 

  34. S.K. Gupta, P.S. Ghosh, N. Pathak, R. Tewari, RSC Adv. 5, 56526 (2015)

    Google Scholar 

  35. S. Lin, Z. Xiu, J. Liu, F. Xu, W. Yu, J. Yu, G. Feng, J. Alloys Compd. 457, L12 (2008)

    ADS  Google Scholar 

  36. E. Mete, R. Shaltaf, S. Ellialtoglu, Phys. Rev. B 68, 035119 (2003)

    ADS  Google Scholar 

  37. L.S. Cavalcante, A.Z. Simoes, J.C. Sczancoski, V.M. Longo, R. Erlo, M.T. Escote et al., Solid State Sci. 9, 1020 (2007)

    ADS  Google Scholar 

  38. B.J. Kennedy, C.J. Howard, B.C. Chakoumakos, Phys. Rev. B 59, 4023 (1999)

    ADS  Google Scholar 

  39. T. Matsuda, S. Yamanaka, K. Kurosaki, S. Kobayashi, J. Alloys Compd. 351, 43 (2003)

    Google Scholar 

  40. D. Souptel, G. Behr, A.M. Balbashov, J. Cryst. Growth, 236, 583 (2002)

    ADS  Google Scholar 

  41. R.V. Shende, D.S. Krueger, G.A. Rosetti, S.J. Lombardo, J. Am. Ceramic Soc. 84, 1648 (2001)

    Google Scholar 

  42. S. Sakaida, Y. Shimokawa, T. Asaka, S. Honda, Y. Iwamoto, Mater. Res. Bull. 67, 146 (2015)

    Google Scholar 

  43. S.P.K. Sheetal, V.B. Taxak, S. Singh, Mandeep, S.P. Khatkar, Optik 125, 6340 (2014)

    ADS  Google Scholar 

  44. M.L. Moreira, P.G.C. Buzolin, V.M. Longo, N.H. Nicoleti, J.R. Sambrano, M.S. Li et al., J. Phys. Chem. 115, 4482 (2011)

    Google Scholar 

  45. L.S. Cavalcante, J.C. Sczancoski, J.M.W. Espinosa, V.R. Mastelaro, A. Michalowicz, P.S. Pizani et al., J. Alloys Compd. 471, 253 (2009)

    Google Scholar 

  46. G. Lupina, J. Dabrowski, P. Dudek, G. Kozlowski, P. Zaumseil, G. Lippert et al., Appl. Phys. Lett. 94, 152903 (2009)

    ADS  Google Scholar 

  47. S.M. Haile, G. Stane, K.H. Ryu, Mater. Sci. 36, 1149 (2001)

    ADS  Google Scholar 

  48. J. Ho, E. Heifets, B. Merinov, Surf. Sci. 601, 490 (2007)

    ADS  Google Scholar 

  49. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz,Wien2k. An Augmented Plane Wave+ Local Orbitals Program for Calculating Crystal Properties (Techn. Universitat, USA, 2001)

  50. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin et al., Phys. Rev. Lett. 100, 136406 (2008)

    ADS  Google Scholar 

  51. R.W.G. Wyckoff, inCrystal Structures, 2nd edn. (Interscience Publishers, New York, 1964), Vol. 2, pp. 390–395

  52. S. Yamanaka, H. Fujikane, T. Hamaguchi, H. Muta, T. Oyama, T. Matsuda et al., J. Alloys Compd. 359, 109 (2003)

    Google Scholar 

  53. R. Terki, H. Feraoun, G. Bertrand, H. Aourag, Phys. Status Solidi B 242, 1054 (2005)

    ADS  Google Scholar 

  54. Z. Wu, R.E. Cohen, D.J. Singh, Phys. Rev. B 70, 104112 (2004)

    ADS  Google Scholar 

  55. S. Nazir, I. Mahmood, N.A. Noor, A. Laref, M. Sajjad, High Energy Density Phys. 33, 100715 (2019)

    Google Scholar 

  56. S. Nazir, N.A. Noor, Q. Afzal, A. Mahmood, J. Electr. Mater. 49, 3072 (2020)

    ADS  Google Scholar 

  57. D. Cherrad, M. Maouche, M. Maamache, L. Krache, Physica B 406, 2714 (2011)

    ADS  Google Scholar 

  58. A. Bouhemadou, Physica B 403, 2707 (2008)

    ADS  Google Scholar 

  59. A. Bouhemadou, R. Khenata, F. Zerarga, Comput. Mater. Sci. 39, 709 (2007)

    Google Scholar 

  60. S.T. Ha, H.F. Liu, Q.H. Xiong, D. Giovanni, T.C. Sum, Q. Xiong, Adv. Opt. Mater. 2, 838 (2014)

    Google Scholar 

  61. B.R. Sutherland, E.H. Sargent, Nat. Photon. 10, 295 (2016)

    ADS  Google Scholar 

  62. N.A. Noor, M. Hassan, M. Rashid, S.M. Alay-e-Abbas, A. Laref, Mater. Res. Bull. 97, 436 (2018)

    Google Scholar 

  63. N.A. Noor, S.M. Alay-e-Abbas, M. Hassan, I. Mahmood, Z. Alahmed, A.H. Reshak, Philos. Mag. 97, 1884 (2017)

    ADS  Google Scholar 

  64. M.A. Khan, A. Kashyap, A.K. Solanki, T. Nautiyal, S. Auluck, Phys. Rev. B 48, 16974 (1993)

    ADS  Google Scholar 

  65. D. Penn, Phys Rev. 128, 2093 (1962)

    ADS  Google Scholar 

  66. J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, C. Wolverton, Mater. Sci. Eng. 65, 1501 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Rashid.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, M., Behram, R.B., Aziz, F. et al. Optoelectronic pressure dependent study of alkaline earth based zirconates AZrO3 (A = Ca, Ba, Sr) using ab-initio calculations. Eur. Phys. J. B 93, 162 (2020). https://doi.org/10.1140/epjb/e2020-10175-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10175-5

Keywords

Navigation