Skip to main content
Log in

Geometric effect on near-field heat transfer analysis using efficient graphene and nanotube models

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Following the recent research enthusiasm on the effect of geometry on near-field heat transfer (NFHT) enhancement, we present an analysis based on simplified yet highly efficient graphene and nanotube models. Two geometries are considered: that of two parallel infinite “graphene” surfaces and that of a one-dimensional infinite “nanotube” line in parallel with an infinite surface. Due to its symmetry, the former is in principal simpler to analyze and even so, earlier works suggested that the application of a full model in this problem still demands heavy computations. Among other findings, our simplified computation – having successfully replicated the results of relevant earlier works – suggests a sharper NFHT enhancement dependence on distance for the line-surface system, namely J ~ d−5.1 as compared to J ~ d−2.2 for the parallel surface. Such comparisons together with applications of our efficient approach would be the important first steps in the attempt to find a general rule describing geometric dependence of NFHT.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Planck, Ann. Phys. 4, 553 (1901)

    Article  Google Scholar 

  2. J.-H. Jiang, J.-S. Wang, Phys. Rev. B 96, 155437 (2017)

    Article  ADS  Google Scholar 

  3. O. Keller, inQuantum theory of Near-Field electrodynamics (Springer, Berlin, 2011), p. 45

  4. G.D. Mahan, Phys. Rev. B 5, 115427 (2017)

    Article  ADS  Google Scholar 

  5. D. Polder, M. Van Hove , Phys. Rev. B 4, 3303 (1971)

    Article  ADS  Google Scholar 

  6. S.M. Rytov,Theory of Electric Fluctuations and Thermal Radiation (Air Force Cambridge Research Center, Bedford, MA, 1953)

  7. J.-S. Wang, Z.-Q. Zhang, J.-T. Lü, Phys. Rev. E 98, 012118 (2018)

    Article  ADS  Google Scholar 

  8. J. Peng, H.H. Yap, G. Zhang, J.-S. Wang, https://arXiv:1703.07113 (2017)

  9. C.M. Hargreaves, Phys. Rev. Lett. A 30, 491 (1969)

    Article  ADS  Google Scholar 

  10. G.A. Damoto, R.F. Boehm, C.L. Tien, J. Heat Transf. 92, 412 (1970)

    Article  Google Scholar 

  11. P. Ben-Abdallah, S.-A. Biehs, Phys. Rev. Lett. 112, 044301 (2014)

    Article  ADS  Google Scholar 

  12. B. Liu, Y. Liu, S. Shen, Phys. Rev. B 90, 195411 (2014)

    Article  ADS  Google Scholar 

  13. F.J.G. de Abajo, ACS Photon. 1, 135 (2014)

    Article  Google Scholar 

  14. A.L. Fetter, J.D. Walecka,Quantum theory of Many-Particle systems (McGraw-Hill, Boston, 1971)

  15. A.P. Jauho,Introduction to the Keldysh nonequilibrium Green function technique (2006), https://nanohub.org/resources/1877

  16. G.D. Mahan,Many-Particle physics, 3rd edn. (Kluwer Academic, Netherlands, 2000)

  17. H. Bruus, K. Flensberg,Many-body quantum theory in condensed matter physics (Oxford University Press, Oxford, 2004)

  18. H. Haug, A.P. Jauho,Quantum kinetics in transport and optics of semiconductors (Springer, Berlin, 1996)

  19. N. Ashcroft, N.D. Mermin,Solid state physics (Cengage Learning, Boston, 1976)

  20. C. Caroli, R. Combescot, P. Nozieres, D. Saint-James, J. Phys. C 4, 916 (1971)

    Article  ADS  Google Scholar 

  21. Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992)

    Article  ADS  Google Scholar 

  22. P.R. Wallace, Phys. Rev. 71, 662 (1947)

    Article  ADS  Google Scholar 

  23. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  24. E.H. Hwang, S. Das Sarma, Phys. Rev. B 75, 205418 (2007)

    Article  ADS  Google Scholar 

  25. R.S. Deacon, K.-C. Chuang, R.J. Nicholas, K.S. Novoselov, A.K. Geim, Phys. Rev. B 76, 081406(R) (2007)

    Article  ADS  Google Scholar 

  26. S. Reich, J. Maultzsch, C. Thomsen, P. Ordejón, Phys. Rev. B 66, 035412 (2002)

    Article  ADS  Google Scholar 

  27. D. Bohm, D. Pines, Phys. Rev. 82, 625 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  28. J. Lindhard, Kgl. Danske Videnskab. Selkab Mat.-fys. Medd. 28, 8 (1954)

    MathSciNet  Google Scholar 

  29. B. Wunsch, T. Stauber, F. Sols, F. Guinea, New J. Phys. 8, 318 (2006)

    Article  ADS  Google Scholar 

  30. B. Mihaila, https://arXiv:1111.5337 (2011)

  31. R. Yu, A. Manjavacas, F.J. García de Abajo, Nat. Commun. 8, 2 (2017)

    Article  ADS  Google Scholar 

  32. L.V. Keldysh, Sov. Phys. JETP 20, 1018 (1965)

    Google Scholar 

  33. J. Peng, J.-S. Wang, https://arXiv:1805.09493 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristo Nugraha Lian.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, K.N., Wang, JS. Geometric effect on near-field heat transfer analysis using efficient graphene and nanotube models. Eur. Phys. J. B 93, 138 (2020). https://doi.org/10.1140/epjb/e2020-10164-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10164-8

Keywords

Navigation