Skip to main content
Log in

Mechanically controlled quantum switch defined on a curved 2DEG

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

An Erratum to this article was published on 09 November 2020

This article has been updated

Abstract

To investigate quantum nature of two dimensional electrons subject to high perpendicular magnetic fields, usually a planar electronic Fabry-Pérot interferometer is utilized. In this work, we investigate an interferometer defined on a curved heterostructure. In the presence of a magnetic field perpendicular to the cylindrical axis, the location and the properties of the edge channels depend on the radial component of the magnetic field. Considering a curved structure, we perform numerical and semi-analytical calculations to determine widths of the incompressible edge states. We observe that the edge states form a closed loop for certain magnetic field strengths yielding observation of conductance oscillations, which can be manipulated by changing the Azimuthal angle mechanically. In addition, we investigate the effect of spin polarization on the edge state distribution considering Zeeman splitting and obtained odd integer edge states. The proposed experiment would yield a novel method to clarify the ongoing debate on the origin of conductance oscillations, namely whether they stem from Aharonov-Bohm phase or charging effects.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 09 November 2020

    In the original article, the first author’s name was mistakenly written as S. Seyyare Aksul. It must be corrected to S. Seyyare Aksu.

    The publisher apologizes for the mistake.

References

  1. K.V. Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (1980)

    Article  ADS  Google Scholar 

  2. D. Tsui, H. Stormer, A. Gossard, Phys. Rev. Lett. 48, 1559 (1982)

    Article  ADS  Google Scholar 

  3. C. Nayak, S.H. Simon, A. Stern, M. Freedman, S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008)

    Article  ADS  Google Scholar 

  4. Y. Zhang, D.T. McClure, E.M. Levenson-Falk, C.M. Marcus, L.N. Pfeiffer, K.W. West, Phys. Rev. B 79, 241304 (2009)

    Article  ADS  Google Scholar 

  5. N. Ofek, A. Bid, M. Heiblum, A. Stern, V. Umansky, D. Mahalu, Proc. Natl. Acad. Sci. 107, 5276 (2010)

    Article  ADS  Google Scholar 

  6. B. Rosenow, B.I. Halperin, Phys. Rev. Lett. 98, 106801 (2007)

    Article  ADS  Google Scholar 

  7. F.E. Camino, W. Zhou, V.J. Goldman, Phys. Rev. B 72, 155313 (2005)

    Article  ADS  Google Scholar 

  8. F.E. Camino, W. Zhou, V.J. Goldman, Phys. Rev. Lett. 98, 076805 (2007)

    Article  ADS  Google Scholar 

  9. H. Choi, P. Jiang, M.D. Godfrey, W. Kang, S.H. Simon, L.N. Pfeiffer, K.W. West, K.W. Baldwin, New J. Phys. 13, 055007 (2011)

    Article  ADS  Google Scholar 

  10. V.K. ki, E. Cicek, A. Siddiki, E.R. sä nen, New J. Phys. 14, 053024 (2012)

    Article  ADS  Google Scholar 

  11. E. Cicek, A. Mese, M. Ulas, A. Siddiki, Physica E 42, 1095 (2010)

    Article  ADS  Google Scholar 

  12. M. Buttikker, Phys. Rev. B 38, 9375 (1988)

    Article  ADS  Google Scholar 

  13. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  14. A.M. Chang, Solid State Commun. 74, 871 (1990)

    Article  ADS  Google Scholar 

  15. D.B. Chklovskii, B.I. Shklovskii, L.I. Glazman, Phys. Rev. B 46, 4026 (1992)

    Article  ADS  Google Scholar 

  16. M.M. Fogler, B.I. Shklovskii, Phys. Rev. B 50, 1656 (1994)

    Article  ADS  Google Scholar 

  17. A. Siddiki, R.R. Gerhardts, Phys. Rev. B 70, 195335 (2004)

    Article  ADS  Google Scholar 

  18. E.M. Kendirlik, S. Sirt, S.B. Kalkan, W. Dietsche, W. Wegscheider, S. Ludwig, A. Siddiki, Sci. Rep. 3, 3133 (2013)

    Article  ADS  Google Scholar 

  19. K.-J. Friedland, R. Hey, H. Kostial, A. Riedel, D. Maude, Physica E 40, 1087 (2008)

    Article  ADS  Google Scholar 

  20. V. Prinz, V. Seleznev, A. Gutakovsky, A. Chehovskiy, V. Preobrazhenskii, M. Putyato, T. Gavrilova, Physica E 6, 828 (2000)

    Article  ADS  Google Scholar 

  21. S. Mendach, O. Schumacher, H. Welsch, C. Heyn, W. Hansen, M. Holz, Appl. Phys. Lett. 88, 212113 (2006)

    Article  ADS  Google Scholar 

  22. A. Vorob’ev, V. Prinz, Y. Yukecheva, A. Toropov, Physica E 23, 171 (2004)

    Article  ADS  Google Scholar 

  23. K.-J. Friedland, A. Siddiki, R. Hey, H. Kostial, A. Riedel, D.K. Maude, Phys. Rev. B 79, 125320 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afif Siddiki.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksul, S.S., Kasikci, O. & Siddiki, A. Mechanically controlled quantum switch defined on a curved 2DEG. Eur. Phys. J. B 93, 163 (2020). https://doi.org/10.1140/epjb/e2020-10070-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10070-1

Keywords

Navigation