Skip to main content
Log in

A DFT/TDDFT study on dual doped bilayer graphene containing Se and X (Ga,P,S)

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The electronic, magnetic and optical properties of dual doped bilayer graphene (BLG), containing the impurity of Se in one monolayer, and X (= Ga, P, S) in other one, were calculated by DFT approach. Given the band structures and DOS diagrams, for the Se-P doped BLG the half-metallic, for the case of Se-Ga the metallic, and for the Se-S doped BLG the semiconductor behavior was observed. These properties were analyzed by plotting the diagrams of equipotential surfaces, spin polarization and PDOS. By calculating the optical properties using TDDFT approach, we found some evidences for the formation of surface plasmons in the Se-Ga doped BLG. Due to their impurities, the absorption spectrums of the three structures in the UV range have significant differences with respect to each other. Finally, in the most optical variables, according to the similarity of Se and Ga atoms in their closed-shell cores, in Se-Ga doped BLG the peaks are stronger and sharper.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.R. Wallace, Phys. Rev. 71, 622 (1947)

    ADS  Google Scholar 

  2. J.W. McClure, Phys. Rev. 104, 666 (1956)

    ADS  Google Scholar 

  3. J.C. Slonczewski, P.R. Weiss, Phys. Rev. 109, 272 (1958)

    ADS  Google Scholar 

  4. R.C. Tatar, S. Rabii, Phys. Rev. B 25, 4126 (1982)

    ADS  Google Scholar 

  5. I.A. Luk’yanchuk, Y. Kopelevich, Phys. Rev. Lett. 93, 166402 (2004)

    ADS  Google Scholar 

  6. K.S. Novoselov, E. McCann, S.V. Morozov, V.I. Fal’ko, M.I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, A.K. Geim, Nat. Phys. 2, 177 (2006)

    Google Scholar 

  7. R.V. Gorbachev, F.V. Tikhonenko, A.S. Mayorov, D.W. Horsell, A.K. Savchenko, Phys. Rev. Lett. 98, 176805 (2007)

    ADS  Google Scholar 

  8. E. McCann, V.I. Fal’ko, Phys. Rev. Lett. 96, 086805 (2006)

    ADS  Google Scholar 

  9. S.B. Trickey, F. Müller-Plathe, G.H.F. Diercksen, J.C. Boettger, Phys. Rev. B 45, 4460 (1992)

    ADS  Google Scholar 

  10. H. Rezania, M. Yarmohammadi, Opt. Mater. 57, 8 (2016)

    ADS  Google Scholar 

  11. V. Apinyan, T.K. Kopec, Physica E 95, 108 (2018)

    ADS  Google Scholar 

  12. A. Qadir, Y.W. Sun, W. Liu, P. Goldberg Oppenheimer, Y. Xu, C.J. Humphreys, D.J. Dunstan, Phys. Rev. B 99, 045402 (2019)

    ADS  Google Scholar 

  13. M. Lalitha, S. Lakshmipathi, S.K. Bhatia, Appl. Surf. Sci. 400, 375 (2017)

    ADS  Google Scholar 

  14. Y. Tang, Z. Liu, Z. Shen, W. Chen, D. Ma, X. Dai, Sens. Actuators B 238, 182 (2017)

    Google Scholar 

  15. G.A. Nemnes, T.L. Mitran, A. Manolescu, D. Dragoman, Comput. Mater. Sci. 155, 175 (2018)

    Google Scholar 

  16. H. Mousavi, J. Khodadadi, M. Grabowski, Physica B 530, 90 (2017)

    ADS  Google Scholar 

  17. V. Apinyan, T.K. Kopec, Superlattices Microstruct. 119, 166 (2018)

    ADS  Google Scholar 

  18. E.I. Kukhar, Physica E 105, 1 (2019)

    ADS  Google Scholar 

  19. N.V. Men, N.Q. Khanh, D.T.K. Phuong, Solid State Commun. 294, 43 (2019)

    ADS  Google Scholar 

  20. M. Moaied, J. Hong, Carbon 131, 266 (2018)

    Google Scholar 

  21. L. Fu, K. Zhang, W. Zhang, J. Chen, Y. Deng, Y. Du, N. Tang, Carbon 143, 1 (2019)

    Google Scholar 

  22. N. Feng, K. Xiang, L. Xiao, W. Chen, Y. Zhu, H. Liao, H. Chen, J. Alloys Compd. 786, 537 (2019)

    Google Scholar 

  23. X. Zhao, L. Yin, T. Zhang, M. Zhang, Z. Fang, C. Wang, Y. Wei, G. Chen, D. Zhang, Z. Sun, F. Li, Nano Energy 49, 137 (2018)

    Google Scholar 

  24. I. Pethes, R. Chahal, V. Nazabal, C. Prestipino, S. Michalik, J. Darpentigny, P. Jóvári, J. Non-Cryst. Solids 484, 49 (2018)

    ADS  Google Scholar 

  25. H. Ullah, A.A. Tahir, T.K. Mallick, Appl. Catal. B 224, 895 (2018)

    Google Scholar 

  26. Y.H. Wang, Y.X. Chen, X. Wu, K.J. Huang, Colloids Surf. B 172, 407 (2018)

    Google Scholar 

  27. O.Ü. Aktürk, M. Tomak, Appl. Surf. Sci. 347, 808 (2015)

    ADS  Google Scholar 

  28. S.V. Kurudirek, M. Kurudirek, B.D.B. Klein, C.J. Summers, N.E. Hertel, Nucl. Instrum. Methods Phys. Res. A 904, 158 (2018)

    ADS  Google Scholar 

  29. B. Poornaprakash, U. Chalapathi, S.V.P. Vattikuti, M.C. Sekhar, B.P. Reddy, P.T. Poojitha, M.S.P. Reddy, Y. Suh, S.H. Park, Ceram. Int. 45, 2289 (2019)

    Google Scholar 

  30. X. Liang, S.P. Ng, N. Ding, C.M.L. Wua, Comput. Mater. Sci. 151, 214 (2018)

    Google Scholar 

  31. P.A. Denis, ChemPhysChem 15, 3994 (2014)

    Google Scholar 

  32. I.H. Lee, L.W. Jang, A.Y. Polyakov, Nano Energy 13, 140 (2015)

    Google Scholar 

  33. B. Huang, J. He, S. Bian, C. Zhou, Z. Li, F. Xi, J. Liu, X. Dong, Chin. Chem. Lett 29, 1698 (2018)

    Google Scholar 

  34. M. Bellardita, E.I. García-López, G. Marcì, I. Krivtsov, J.R. García, L. Palmisano, Appl. Catal. B 220, 222 (2018)

    Google Scholar 

  35. X. Bu, Y. Gao, S. Zhang, Y. Tian, Chem. Eng. J. 355, 910 (2019)

    Google Scholar 

  36. H. Luitel, S. Roy, D. Sanyal, Comput. Condens. Matter 14, 36 (2018)

    Google Scholar 

  37. K. Wang, A. Harzheim, T. Taniguchi, K. Watanabei, J.U. Lee, P. Kim, Phys. Rev. Lett. 122, 146801 (2019)

    ADS  Google Scholar 

  38. G. Wang, M. Zhang, D. Chen, Q. Guo, X. Feng, T. Niu et al., Nat. Commun. 9, 5168 (2018)

    ADS  Google Scholar 

  39. S. Kim, D.H. Shin, C.O. Kim, S.S. Kang, J.M. Kim, C.W. Jang et al., ACS Nano 7, 5168 (2013)

    Google Scholar 

  40. C.O. Kim, S. Kim, D.H. Shin, S.S. Kang, J.M. Kim, C.W. Jang et al., Nat. Commun. 5, 3249 (2014)

    ADS  Google Scholar 

  41. D. Giofré, D. Ceresoli, G. Fratesi, M.I. Trioni, Phys. Rev. B 93, 205420 (2016)

    ADS  Google Scholar 

  42. M. Alattas, U. Schwingenschlögl, Sci. Rep. 8, 17689 (2018)

    ADS  Google Scholar 

  43. P.A. Denis, F. Iribarne, Phys. Chem. Chem. Phys. 18, 24693 (2016)

    Google Scholar 

  44. P.A. Denis, F. Iribarne, Chem. Phys. Lett. 658, 152 (2016)

    ADS  Google Scholar 

  45. I. Timrov, N. Vast, R. Gebauer, S. Baroni, Comput. Phys. Commun. 196, 460 (2015)

    ADS  Google Scholar 

  46. J.A. Garlow, L.K. Barrett, L. Wu, K. Kisslinger, Y. Zhu, J.F. Pulecio, Sci. Rep. 6, 198041 (2016)

    Google Scholar 

  47. P.A. Denis, Chem. Phys. Lett. 508, 95 (2011)

    ADS  Google Scholar 

  48. F. Wooten,Optical Properties of Solids (Academic Press, New York, 1972)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Moradi.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safaei Ardakani, Y., Moradi, M. A DFT/TDDFT study on dual doped bilayer graphene containing Se and X (Ga,P,S). Eur. Phys. J. B 93, 99 (2020). https://doi.org/10.1140/epjb/e2020-100579-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-100579-0

Keywords

Navigation