Skip to main content
Log in

Left-handedness in the balanced/unbalanced resonance conditions of a quantized composite right-left handed transmission line

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Left-handedness signifies negative permittivity (εr) and permeability (μr) in the same frequency band. The εr and μr are evaluated in a quantized composite right-left handed transmission line (CRLH-TL), and the frequency band for left-handedness is also valuated in the balanced resonance (LrCl = LlCr) and unbalanced resonance (LlCrLrCl) cases in the displaced squeezed Fock state. The results show that the balanced resonance plays an important role in bandwidth and achieving for left-handedness. This displays some quantum mechanical behaviors and proposes a new potential approach to wider frequency band left-handedness for the quantized CRLH-TL.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001)

    ADS  Google Scholar 

  2. V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968)

    ADS  Google Scholar 

  3. M.W. Feise, P.J. Bevelacqua, J.B. Schneider, Phys. Rev. B 66, 035113 (2002)

    ADS  Google Scholar 

  4. S.C Zhao, Z.D. Liu, Int. J. Quantum Inf. 07, 747 (2009)

    Google Scholar 

  5. K. Aydin, I. Bulu, E. Ozbay, Appl. Phys. Lett. 90, 77 (2007)

    Google Scholar 

  6. C. Du, H. Chen, S. Li, Phys. Rev. B 74, 3105 (2006)

    Google Scholar 

  7. U. Leonhardt, T.G. Philbin, New J. Phys. 9, 254 (2007)

    ADS  Google Scholar 

  8. J. Pendry, Nature 423, 22 (2003)

    ADS  Google Scholar 

  9. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis, Nature 423, 604 (2003)

    ADS  Google Scholar 

  10. Q. Thommen, P. Mandel, Phys. Rev. Lett. 96, 053601 (2006)

    ADS  Google Scholar 

  11. S.C. Zhao, H.W. Guo, X.J. Wei, Opt. Commun. 400, 30 (2017)

    ADS  Google Scholar 

  12. C. Caloz, T. Itoh, IEEE-APS Int. Symp. Digest 2, 412 (2002)

    Google Scholar 

  13. C. Caloz, IEEE Microw. Wirel. Compon. Lett. 16, 585 (2006)

    Google Scholar 

  14. C. Caloz, S. Abielmona, H. Van Nguyen, A. Rennings, Phys. Status Solidi B 244, 1219 (2007)

    ADS  Google Scholar 

  15. H. Wang, A.P. Zhuravel, S. Indrajeet, B.G. Taketani, M.D. Hutchings, Y. Hao, F. Rouxinol, F.K. Wilhelm, M.D. LaHaye, A.V. Ustinov, B.L.T. Plourde, Phys. Rev. Appl. 11, 054062 (2019)

    ADS  Google Scholar 

  16. A. Messinger, B.G. Taketani, F.K. Wilhelm, Phys. Rev. A 99, 032325 (2019)

    ADS  Google Scholar 

  17. A. Sanada, C. Caloz, T. Itoh, IEEE Microw. Wirel. Compon. Lett. 14, 68 (2004)

    Google Scholar 

  18. C. Caloz, T. Itoh, Invited-novel microwave devices and structures based on the transmission line approach of meta-materials, inInternational Microwave Symposium Digest, 2003

  19. H.V. Nguyen, C. Caloz, IEEE Trans. Microw. Theor. Tech. 55, 1029 (2007)

    ADS  Google Scholar 

  20. T.M. De, M. Luque, N.R. Devarapalli, C.G. Christodoulou, Prog. Electromagn. Res. 131, 185 (2012)

    Google Scholar 

  21. D. Segoviavargas, F.J. Herraizmartinez, E. Ugartemunoz, L.E. Garciamimoz, V. Gonzalezposadas, Prog. Electromagn. Res. 133, 91 (2013)

    Google Scholar 

  22. K.A.A. Shamaileh, A.M. Qaroot, N.I. Dib, Prog. Electromagn. Res. 113, 269 (2011)

    Google Scholar 

  23. S.C. Zhao, H.W. Guo, X.J. Wei, Opt. Quantum Electron. 49, 222 (2017)

    Google Scholar 

  24. C. Zhao, X.J. Wei, Q.X. Wu, Superlattices Microstruct. 105, 209 (2017)

    ADS  Google Scholar 

  25. X.J. Wei, S.C. Zhao, H.W. Guo, Superlattices Microstruct. 110, 331 (2017)

    Google Scholar 

  26. Q.X. Wu, S.C. Zhao, Chin. Phys. B 27, 68102 (2018)

    Google Scholar 

  27. S.C. Zhao, X. Li, Ann. Phys. 531, 1900495 (2019)

    Google Scholar 

  28. J.C. Flores, Phys. Rev. B 64, 235309 (2001)

    ADS  Google Scholar 

  29. S. Zhang, Y.H. Liu, J. Yanbian Univ. 322, 356 (2004)

    Google Scholar 

  30. Y.H. Ji, H.M. Luo, Q. Guo, Phys. Lett. A 349, 104 (2006)

    ADS  Google Scholar 

  31. Y.H. Ji, Phys. Lett. A 372, 3874 (2008)

    ADS  Google Scholar 

  32. C. Caloz, A. Sanad, T. Itoh, IEEE Trans. Microw. Theor. Tech. 52, 980 (2004)

    ADS  Google Scholar 

  33. A. Sanada, C. Caloz, T. Itoh, IEEE Microw. Wirel. Compon. Lett. 14, 68 (2004)

    Google Scholar 

  34. C. Caloz, T. Itoh, IEEE Trans. Antennas Propag. 52, 1159 (2004)

    ADS  Google Scholar 

  35. G.V. Eleftheriades, O. Siddiqui, A.K. Iyer, IEEE Microw. Wirel. Compon. Lett. 13, 51 (2003)

    Google Scholar 

  36. A. Lai, C. Caloz, T. Itoh, IEEE Microw. Mag. 5, 34 (2004)

    Google Scholar 

  37. H. Umezawa, Y. Yamanaka, Adv. Phys. 37, 531 (1988)

    ADS  Google Scholar 

  38. Y.H. Ji, Acta Phys. Sinica 52, 457 (2003)

    Google Scholar 

  39. J. Oz-Vogt, A. Mann, M. Revzen, Opt. Acta Int. J. Opt. 38, 9 (1991)

    Google Scholar 

  40. H. Fearn, M.J. Collett, Opt. Acta Int. J. Opt. 35, 553 (1988)

    Google Scholar 

  41. D.J. Egger, F.K. Wilhelm, Phys. Rev. Lett. 111, 163601 (2013)

    ADS  Google Scholar 

  42. H. Salehi, A.H. Majedi, R.R. Mansour, IEEE Trans. Appl. Superconduct. 15, 996 (2005)

    ADS  Google Scholar 

  43. I.M. Pop, I. Protopopov, F. Lecocq, Z. Peng, B. Pannetier, O. Buisson, W. Guichard, Nat. Phys. 6, 589 (2014)

    Google Scholar 

  44. C. Hutter, E.A. Tholén, K. Stannigel, J. Lidmar, D.B. Haviland, Phys. Rev. B 83, 014511 (2011)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-Cai Zhao.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, XJ., Zhao, SC. Left-handedness in the balanced/unbalanced resonance conditions of a quantized composite right-left handed transmission line. Eur. Phys. J. B 93, 81 (2020). https://doi.org/10.1140/epjb/e2020-10046-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10046-1

Keywords

Navigation