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Abstract. In this paper Nowak–Szamrej–Latané model is reconsidered. This computerised model of opinion
formation bases on Latané theory of social impact. We modify this model to allow for multi (more than two)
opinions. With computer simulations we show that in the modified model the signatures of order/disorder
phase transition are still observed. The transition may be observed in the average fraction of actors sharing
the ith opinion, its variation and also average number of clusters of actors with the same opinion and
the average size of the largest cluster of actors sharing the same opinion. Also an influence of model
control parameters on simulation results is shortly reviewed. For a homogeneous society with identical
actors’ supportiveness and persuasiveness the critical social temperature TC decreases with an increase
of the number of available opinions K from TC = 6.1 (K = 2) via 4.7, 4.1 to TC = 3.6 for K = 3, 4, 5,
respectively. The social temperature plays a role of a standard Boltzmann distribution parameter containing
social impact as the equivalent of energy or one may think about it just as on a noise parameter.

1 Introduction

Simulations of opinion dynamics [1] are core subject of
sociophysics [2,3], an interdisciplinary field of research
in complex systems directly connected to computa-
tional sociology. Numerous examples of such research are
published in interdisciplinary sections of physical jour-
nals [4–11], and in journals devoted to computational
sociology [12–18]. The models of opinions dynamics deals
with binary (or Boolean), Ising-like [19,20] variables, cor-
responding to two-states models of opinions [21–24] or
multi-state, but still discrete state opinions models [7,25]
or discrete vector-like variables [8]. The second group of
models deals with continuous opinions [12,14,15,26–34].

Another classification of opinion dynamics models may
be based on geometry of underlying network of con-
nections among actors. Basing on this criteria we can
deal with continuous (plane-like) [6,13,35,36] or discrete
geometry. The later may be divided into additional sub-
groups, with regular lattices [23–25,27,37] or complex
networks [9,21,38–43].

The last classification includes system dynamics in
terms of time evolution of the system, which again may
occurring in discrete or in continuous time.

Assumed scheme of system representation force choos-
ing the most adequate numerical technique for computer
simulation of the system, including solving set of dif-
ferential equations [44] (continuous space of opinions,
continuous geometry and continuous time) or cellular
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automata technique [45–49] (discrete space of opinions,
discrete time and discrete geometry).

The topic of public opinion formation and its dynamics
still brings vivid interest of researches (see Refs. [50–55]
for the most recent papers).

In this paper Nowak–Szamrej–Latané model is recon-
sidered [56]. We propose multi-choice opinion dynamics
model based on Latané [57–59] theory. With computer
simulation we show that in the system with the long-range
interactions among actors and more than two opinions the
order–disorder phase transition is also observed.

1.1 Theory of social impact

The mathematical model being the foundation of this
work relies on Latané social impact theory [57–59] and
its computerised version proposed by Nowak et al. [56].
This approach for binary opinions and possible charis-
matic leader localised in the system centre has been
thoroughly explored in Ho lyst, Kacperski and Schweitzer
papers [10,11] (see Ref. [60] for review).

Latané assumes that people are social animals and in
their natural environment (society) they influence each
other. These interactions do not have to be intentional.
Under this assumption we understand all interactions
among people. Persuasion, joke, sharing emotions and feel-
ings – all of these can affect others. Latané describes these
interactions as social impact.

The theory of social impact bases on three fundamental
principles: (i) social force, (ii) psycho-social law and (iii)
multiplication/division of impact.
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1.1.1 Social force

The social force principle [59] says that social impact I
on ith actors is a function of the product of strength S,
immediacy J , and the number of sources N

I = F(SJN). (1)

The strength of influence is the intensity, power or
importance of the source of influence. This concept may
reflect socio-economical status of the one that affects on
our opinion, his/her age, prestige or position in the society.

The immediacy determines the relationship between the
source and the goal of influence. This may mean closeness
in the social relationship, lack of communication barriers
and ease of communication among actors.

Latané called this principle ‘a bulb theory of social rela-
tions’. According to this analogy the social impact plays
a role of illuminance. The illuminance depends on

– the power of the bulb (physicists prefer to think
about bulb’s luminous flux) – equivalent of the
strength of impact

– the distance from sources (bulbs) – equivalent of the
immediacy

– and the number of bulbs – equivalent of the number
of people.

1.1.2 Psycho-social law

The formula proposed by Latané is fitted to the data of
Gerard et al. [61] (which were obtained in a repetition of
the famous Asch [62] experiment) and Milgram et al. [63]
experiments:

I ∝ SNβ , (2)

where N is the number of people exerting the impact,
S is a strength of impact and 0 < β < 1 is the scaling
exponent.

This means that each next actor j sharing the same
opinion as actor i exerts the lower impact on the ith
actor. This formula has been independently confirmed
experimentally by Latané [57].

1.1.3 Multiplication/division of impact

The lecture for single student influence his/her much more
the same lecture given for hundred of students. In the
latter case, the impact of lecture is roughly equally divided
among all listeners [64]. For this issue Latané proposes

I ∝ SN−γ , (3)

where the scaling exponent 0 < γ < 1.
Latané confirmed the legitimacy of using formula (3)

with research on the bystander effect [65,66] carried out
jointly with Darley [64]. This experiment was repeated
many times by various researchers. Latané and Nida [58]
collected the results of nearly one hundred of such studies
and validated equation (3).

1.1.4 The limitations of the theory

The main limitation of the social impact theory lies in
treating people as totally passive. The second trouble is
the absence of dynamics in the model. These issues have
been solved by Nowak et al. [56] in the computerised
version of Latané model.

2 Model

Every actor at position i is characterised by his/her
discrete opinion ξi, his/her persuasiveness (0 ≤ pi ≤ 1)
and his/her supportiveness (0 ≤ si ≤ 1). Parameter pi
describes the intensity of persuasion to change the opinion
by actor i from a person with opinion different than ξi,
while si describes the intensity of supporting people with
the same views.

2.1 Two opinions (K = 2)

For two opinions one can assume integer values of ξi ∈
{−1,+1}. For evaluation of social impact Ii on actor
at position i one can apply formula proposed in refer-
ence [60]:

Ii(t) = JP
(∑N

j=1

q(pj)

g(di,j)
[1− ξi(t)ξj(t)]

)
(4a)

−JS
(∑N

j=1

q(sj)

g(di,j)
[1 + ξi(t)ξj(t)]

)
, (4b)

where JP (·), JS(·), q(·), g(·) stand for scaling functions
and di,j is Euclidean distance between sites i and j.
The system dynamics may be governed by heat-bath-like
dynamics [11], i.e.:

ξi(t+ 1) =



ξi(t) with probability

exp

(
−Ii(t)
T

)
2 cosh

(
Ii(t)

T

) ,

−ξi(t) with probability

exp

(
Ii(t)

T

)
2 cosh

(
Ii(t)

T

) ,
(5)

where T is a noise parameter (social temperature [67,68]).
The meaning of the social temperature T parameter is not
different to the meaning of temperature in Ising [19,20] or
majority-voter model [69]. Namely, for T = 0 the system
is fully deterministic while for T →∞ the actors decisions
(and accepted opinion) are random.

For T = 0 the rule (5) may be reduced to fully
deterministic rule [11]

ξi(t+ 1) = sgn(Ii(t)) (6)

as Ii(t) = 0 is practically impossible to occur.
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Fig. 1. In the top line the snapshots from simulation of the system containing L2 = 402 sites and K = 2 are presented. The blue
and red colours correspond to various actors opinions (ξi ∈ {−1,+1}). The subsequent columns correspond to time steps t = 0,
1, 10, respectively. In subsequent rows the probabilities of changing opinion Pi associated with sites i and for social temperature
T = 0, 1 and 3 are presented. ∀i : pi = si = 0.5, α = 3 [70].

2.2 Three and more opinions (K > 2)

For multi-state space of opinions we do not assign numeric
values to opinions

ξi ∈ {Ξ1,Ξ2, . . . ,ΞK}, (7)

where K is the number of available opinions. We rather
prefer to think about various ‘colours’ of opinions, or
about K orthogonal versors in K-dimensional vector
space. Also we propose some modifications of equa-
tion (4). We propose to separate the social impact
on actor i from actors j sharing opinion of actor

https://epjb.epj.org/
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i (ξj = ξi)

Ii,k(t) = 4Js

 N∑
j=1

q(sj)

g(di,j)
δ(Ξk, ξj(t))δ(ξj(t), ξi(t))


(8a)

and all other actors having different K − 1 opinions
(ξj 6= ξi)

Ii,k(t) = 4Jp

 N∑
j=1

q(pj)

g(di,j)
δ(Ξk, ξj(t))[1− δ(ξj(t), ξi(t))]

,
(8b)

where 1 ≤ k ≤ K enumerates the opinions and
Kronecker’s delta δ(x, y) = 1 if x = y and zero other-
wise. The factor of four in equation (8) guaranties exactly
the same impact on actor i as calculated basing on
equation (4) for K = 2.

Please note, that terms [1± ξi(t)ξj(t)] from equation (4)
are missing in equation (8). In equation (4) term [1 −
ξi(t)ξj(t)] vanishes when actors i and j have the same
opinion (ξi(t)ξj(t) = +1), which means that the term is
active for actors’ pairs having different opinions – the per-
suasion stage takes place. Term [1 + ξi(t)ξj(t)] vanishes
when actors i and j have different opinion (ξi(t)ξj(t) =
−1), which means that the term is active for actors’ pairs
having common opinions – the support stage takes place.
When we do not assign numeric values for ξi (as we do for
K > 2) the equation (8a) is applied if actors i and j have
the same opinion, and we use equation (8b) to calculate
K − 1 influences Ii,k on ith actor from actors j having
K − 1 opinions different from the opinion of ith actor.

The calculated social impacts Ii,k(t) influence the ith
actor opinion ξi(t + 1) at the subsequent time step. For
T = 0 this opinion is determined by this opinion k which
believers exert the largest social impact on ith actor

ξi(t+ 1) = Ξk

⇐⇒ Ii,k(t) = max(Ii,1(t), Ii,2(t), . . . , Ii,K(t)). (9)

For finite values of social temperature T > 0 we apply
the Boltzmann choice

pi,k(t) = exp

(
Ii,k(t)

T

)
, (10)

which yield probabilities

Pi,k(t) =
pi,k(t)∑K
j=1 pi,j(t)

(11)

of choosing by ith actor in the next time step kth opinion:

ξi(t+ 1) = Ξk, with probability Pi,k(t). (12)

The form of dependence (10) in statistics and economy is
called logit function [71,72].

Fig. 2. The time evolution of the average changing opinion
probability P̄ [%] for various values of social temperatures T
[70].

We assume identity function for scaling functions
JS(x) ≡ x, JP (x) ≡ x, q(x) ≡ x. The distance scaling
function should be an increasing function of its argument.
Here, we assume the distance scaling function as

g(x) = 1 + xα, (13)

what ensures non-zero values g(0) = 1 of denominator for
self-supportivenees in equation (8a). The exponent α is an
arbitrary quantity which characterise the long-range inter-
action among actors. For small values of α (for instance for
α = 2) we assume good communication among actors, well
access to information in the society and good exchange
of information. In contrary, for larger values of α (for
instance for α = 6) discussion and information exchange
takes place only in the actors’ nearest neighbourhood.

Newly evaluated opinions are applied synchronously to
all actors.

The simulations are carried out on square lattice of
linear size L = 40 with open boundary conditions. We
assume identical values of supportivenees and persuasive-
ness for all actors ∀i : si = pi = 0.5. We set exponent
α = 3 in the distance scaling function (13).

The web application allowing for direct observation of
the system evolution is available at http://www.zis.agh.
edu.pl/app/MSc/Przemyslaw Bancerowski/. The short
manual for this application is available in Appendix A.

3 Results

3.1 Two opinions

3.1.1 Influence of the model parameters on opinion
dynamics

To understand better the system time evolution the maps
of probabilities Pi of opinion changes at sites i (for K = 2)
are presented in Figure 1. The snapshots of system states
at t = 0, 1 and 10 are presented in the first row of Figure 1.

https://epjb.epj.org/
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Fig. 3. The maps of probabilities of opinion changes Pi [%] for social temperature T = 1 at the initial random distribution of
opinions (t = 0) and after ten time steps of simulation (t = 10) and for various values of exponent α = 2, 3 and 6. In the first
row the snapshots from simulations indicating the spinsons opinions for t = 0 (first column) and t = 10 (second column) are
presented [70]. The blue and red colours correspond to various actors opinions (ξi ∈ {−1,+1}).

The corresponding to these states probabilities of opinion
changing (flipping) for social temperatures T = 0, 1 and 3
are presented in the second, third and fourth row of
Figure 1, respectively. For T = 0 (the second row) the
system is fully deterministic and ∀i : Pi ∈ {0, 1}. For
long enough times of evolution the system reaches the

nearly-steady state (with single spinsons1 going to change
their minds) and clearly defined borders between groups

1 The term ‘spinson’ comes from merging words ‘spin’ and ‘person’
and it describes actor who may have only two opinions. The term
was introduced in 2013 by Nyczka and Sznajd-Weron [5].

https://epjb.epj.org/
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(clusters) of spinsons with different opinions. The static
picture of the system is also observed for T > 0, with
non-zero probabilities of changing opinions Pi for spinson
i located at the clusters borders.

In Figure 2 the time evolution of the spatial average of
probabilities of opinion changes

P̄ = L−2
L2∑
i=1

Pi

is presented. The spatial average over L2 sites is marked
through this paper by a bar (̄·). For long enough times
the average probabilities of opinion changes P̄ increases
smoothly with increase of social temperature, reaching
P̄ ≈ 10% for T = 4.

As expected, an increase the social temperature T
enhances the spinsons nonconformity, i.e. they are able
to change their minds although social impact exerted on
them by other members of the society with the same opin-
ion. In the limit of infinite social temperature every actor
chooses his/her opinion randomly, as

lim
T→∞

pi,k(t) = 1 and lim
T→∞

Pi,k(t) = 1/K.

In Figure 3 the maps of probabilities changes Pi are
presented again. The first row shows the snapshots from
simulations indicating the spinsons opinions for t = 0 (first
column) and t = 10 (second column). The subsequent
rows correspond to probabilities of opinion changes for
various values of exponent α in the distance scaling func-
tion g(x) [Eq. (13)] – α = 2, 3, 6 in the second, third and
fourth row, respectively. The random initial configuration
of opinions leads to random maps of Pi. However, ten
time steps of system relaxation allows for an observation
of both: the spatial clusterization of spinsons shearing the
same opinion and high probabilities of opinion changing at
the borders of these clusters. Moreover, for high values of
exponent α differences among the minimal and the max-
imal values of Pi are much smaller than for small values
of α.

Quantitatively these differences may be observed in
Figure 4 for purely deterministic (T = 0) and non-
deterministic (T = 1) cases. In principle, for T > 0 the
higher value of the exponent α leads to the higher value of
P̄ which values saturate on the level P̄ ≈ 1% after hundred
simulation steps for T = 1 and α > 4.

3.1.2 Phase transition

In Figure 5a the results on an average opinion

ξ̄(t) ≡ L−2
L2∑
i=1

ξi(t), (14)

for various values of the social temperature T are pre-
sented. Similarly to the Ising model some signatures of
the phase transition in the system may be observed. For
low social temperature (T < TC) the system is in ordered

Fig. 4. The time evolution of the average probability P̄ [%]
of opinion changes for various values of the distance function
scaling exponents α [70].

phase with majority of one (initially dominant) opin-
ion. However, for high enough temperature (T > TC) the
average opinion oscillates around ξ̄ = 0.

In Figure 5b an example of time evolution of the
spatial average opinion in the system for T → T+

C is pre-
sented. Although the long-range interaction among actors
is assumed, the time evolution ξ̄(t) is not different from
‘magnetisation’ evolution in the Ising model with charac-
teristic ‘magnetisation’ switching between its positive and
negative values above the Curie temperature.

In Figure 6a we plot the temporal average

〈ξ̄〉 ≡ τ−1
tM∑
t=t0

ξ̄(t), (15)

for various temperatures T . The temporal average over
τ times steps is marked through this paper by brackets
(〈· · · 〉). Here, τ = 5000–100, i.e. the first hundred of time
steps is excluded from the averaging procedure.

The ordered phase phase vanishes for T > TC ≈ 6.1.
This critical value of TC coincidences nicely with a peak

https://epjb.epj.org/
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Fig. 5. The time evolution of average opinion ξ̄ for K = 2
opinions and various social temperatures T . L = 40, α = 3,
∀i : pi = si = 0.5 [70].

of average opinion dispersion

σ2(ξ̄) = 〈ξ̄ 2〉 − 〈ξ̄〉2 (16)

as presented in Figure 6b. The values of σ plays a role of
static susceptibility χ in Ising-like systems. We confirm the
earlier results indicating the phase transition in Nowak–
Szamrej–Latané model for binary opinions [10].

In the next section we show that the above mentioned
results are generic also when multi-opinions are available
in the system.

3.2 Three and more opinions

As we mentioned in Section 2.2 for K > 2 we do not
assign numerical values to opinions ξi. Instead, we pre-
fer to think about K ‘colours’ Ξk=1,··· ,K of opinions (see
Fig. 7 for snapshots from simulations presenting spatial
distributions of opinions for T = 0, 6 and K = 3, 6). This
assumption does not allow for dealing with 〈ξ̄〉 [Eq. (15)]
and σ(ξ̄) [Eq. (16)] in order to identify the critical social
temperature TC . Thus for this purpose we propose to deal

Fig. 6. The values of (a) average values of opinion 〈ξ̄〉 and
(b) its standard deviation σ(ξ̄). L = 40, α = 3, ∀i : pi = si =
0.5. The values of ξ̄ are averaged over last τ = 5000−100 time
steps [70].

with a fraction 〈n̄k〉 of actors sharing the kth opinion and
its standard deviation σ(n̄k).

In Figures 8a–8c and Figures 8d–8f we plot 〈n̄k〉 and
σ(n̄k) for K = 3, 4, 5, respectively. As we can see in
Figures 8a–8c the majority 〈n̄1(t = 0)〉 of holders of opin-
ion Ξ1 vanishes with increasing the social temperature
T . For critical social temperature T ≥ TC all available
opinions Ξ1, · · · ,ΞK in the system are equally occupied
(〈n̄1〉 = 〈n̄2〉 = 〈n̄3〉 ≈ 33% for K = 3 and 〈n̄1〉 = · · · =
〈n̄5〉 ≈ 20% for K = 5).

Again, vanishing of initially major opinion at T = TC
coincidences nicely with maximal values of σ(n̄k) as pre-
sented in Figures 8d–8f. Similar critical behaviour may
be observed in thermal evolution of the size of the larger
cluster of actors sharing the same opinion 〈S̄max〉 (see
Figs. 8g–8i) and the total number 〈C̄〉 of clusters of actors
sharing the same opinion (see Figs. 8j–8l). The increase of
the number of clusters with increasing social temperature
is also clearly visible in Figure 7.

4 Discussion and conclusions

In this paper we proposed multi-choice opinion dynamics
model based on Latané theory. With computer simulation

https://epjb.epj.org/
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Fig. 7. The snapshots of opinions spatial distribution for social temperature T = 0 (the first column) and T = 6 > TC (the
second column) for various numbers of available opinions K = 3 (the first row) and K = 6 (the second row). The various colours
correspond to various actors opinions (ξi ∈ {Ξ1,Ξ2, . . . ,ΞK}).

we show, that for multi-opinion version of the Nowak–
Szamrej–Latané model of opinion dynamics even without
assigning numeric values for opinions we are able to
observe phase transition similar to this occurring in
two-state Ising-like models of opinion dynamics.

As we avoid signing a numerical values to possible opin-
ions, we do not need to use the Likert-like scale [73] with
possible Likert items as ‘1 = Strongly disagree’, ‘2 = Dis-
agree’, ‘3 = Neither agree nor disagree’, ‘4 = Agree’ and

‘5 = Strongly agree’. Likert scale falls within the ordi-
nal level of measurement accordingly to the best known
classification of scales of measurement by [74].

Instead of signing a numerical values to possible opin-
ions we deal with K ‘colours’ of opinions Ξ1,Ξ2, . . . ,ΞK
and probabilities of choosing these opinions given by equa-
tions (10)–(11). Please note that these ‘colours’ are equally
distanced to each other and none of them is better or worse
than others. Thus our scale of opinions corresponds to the

https://epjb.epj.org/
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Fig. 8. The values of (a–c) 〈n̄k〉, (d–f) 〈σ(n̄k)〉, (g–i) 〈S̄max〉 and (j–l) 〈C̄〉 for L = 40 and ∀i : pi = si = 0.5 averaged over last
τ = 5000−100 time steps.

nominal level of measurement [74]. Please note, that term
responsible for actors interactions with other actors who
share the same opinions [Eq. (8a)] is not dissimilar to the
Potts model [75], where phase transition is also observed.

As we do not assign numerical values ξi to differen-
tiate actors opinions we can observe the order/disorder
phase transition in thermal dependence of 〈n̄k〉, σ(n̄k),
〈S̄max〉, 〈C̄〉. The results of our simulations indicate
that the critical temperature TC decreases with increas-
ing the number of opinions K available in the system
(see Tab. 1 and Fig. 9). We conclude, that for opinion

Table 1. The values of critical social temperature TC
for various number K of opinion available in the system
deduced from Figures 6 and 8.

K 2 3 4 5

TC 6.1 4.7 4.1 3.6

Nowak–Szamrej–Latané model – with multi-choice of
opinions and long-rage interactions among actors – the
phase transition from ordered to disordered phase is also
observed.

https://epjb.epj.org/
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Fig. 9. Dependence of the critical social temperature TC on
the number of available opinions K.
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Appendix A: Manual

Application was designed to show dynamic process of
opinion formation. It allows to change parameters dur-
ing simulation and tracking results. Application consists
of two main elements:

– control and results panels on the left,
– simulation area on the right.

Control panels are divided into small windows. Each of
them may be collapsed by clicking on the upper bar. From
the top there are the following panels:

– Control allows to pause and restart simulation with
applied parameters.

– Grid parameters contains following parameters:
Height and Width dimensions of the grid.
Number of opinion K, number of available

opinions.
Random opinion indicates whether starting opin-

ion of each actor is randomly chosen from K
allowed values or all actors have the same opinion.

Random parameters when this option is selected
then parameters pi and si are randomly chosen
from range [0, 1] with uniform distribution.

Parameter p, Parameter s when Random par-
ameters is not selected then all actors have

the same fixed persuasiveness and supportiveness
equal to this two values.

Parameters located here can not be changed during
simulation. After change user have to apply them by
clicking button on bottom, after this new grid will
be created and previous simulation will be lost.

– Simulation parameters allows to change following
parameters during the simulation:
External field button which opens pop-up with K

numeric values. Changing these values introduce
impact from outside. It allows to strengthen or
weaken a particular opinion.

Temperature social temperature T .
Distance function exponent exponent α used in

distance scaling function (13).
Delay slider specifying pause time between steps of

simulation.
– Leader parameters allows to manually changing opin-

ion and parameters pi, si of an actor in grid centre.
This allows to introduce a strong leader with per-
suasiveness and supportiveness higher than 1.

– Results numbers of actors with particular opinion.
– Chart dynamically generated chart which shows the

results over time.

The simulation area is built of squares. Each square rep-
resents one actor. The colour of square represents opinion.
Height of the darker bars on the bottom of the square indi-
cates values of parameters pi (on the left) and si (on the
right). When simulation is paused user can click on actor
to see impacts from each opinion and chance of changing
opinion in next step.
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58. B. Latané, S. Nida, Psychol. Bull. 89, 308 (1981)
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