Skip to main content
Log in

Electronic properties of single and double napped carbon nanocones

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, we study the electronic properties of carbon nanocones with one and two nappes, with pentagonal and heptagonal defects in their lattices. We use the continuum model, which is based on a Dirac-like Hamiltonian with the topological defects described by localized non-Abelian gauge field fluxes. We develop a geometrical approach that can describe the two nappes of the double cone surface simultaneously, by extending the radial coordinate to the complete set of real numbers. We show that, for some combinations of different nanocones, forming the double conical surface, the local density of states near the apex of the cone does not vanish at the Fermi energy and presents a strong dependence on the angular momentum. We also obtain the energy spectrum for finite-sized nanocones and verify that it depends on the choice of topological defect on the surface, which suggests that a double nanocone can be used to control the electronic transport in carbon-based electronic devices. Furthermore, we study the effects of an uniform magnetic field parallel to the cone axis on its electronic states. The Landau Levels are analytically obtained and a detailed analysis of the energy spectrum is done considering combinations of the relevant quantum numbers. We find highly degenerated energy modes, as in the planar case, and apical states dependent on the geometric parameters of the surface.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Tagmatarchis, Advances in Carbon Nanomaterials (Pan Stanford, New York, 2012)

  2. H. Kroto, J. Heath, S. Obrien, R. Curl, R. Smalley, Nature 318, 162 (1985)

    Article  ADS  Google Scholar 

  3. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  4. M. Ge, K. Sattler, Chem. Phys. Lett. 220, 192 (1994)

    Article  ADS  Google Scholar 

  5. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  6. X. Xie, L. Ju, X. Feng, Y. Sun, R. Zhou, K. Liu, S. Fan, Q. Li, K. Jiang, Nano Lett. 9, 2565 (2009)

    Article  ADS  Google Scholar 

  7. D. Ugarte, Nature 359, 707 (1992)

    Article  ADS  Google Scholar 

  8. J. Liu, H. Dai, J.H. Hafner, D.T. Colbert, R.E. Smalley, S.J. Tans, C. Dekker, Nature 385, 780 (1997)

    Article  ADS  Google Scholar 

  9. S. Iijima, T. Ichihashi, Y. Ando, Nature 356, 776 (1992)

    Article  ADS  Google Scholar 

  10. S. Iijima, T. Ichihashi, Nature 363, 603 (1993)

    Article  ADS  Google Scholar 

  11. M. Ge, K. Sattler, Appl. Phys. Lett. 64, 710 (1994)

    Article  ADS  Google Scholar 

  12. A. Krishnan, E. Dujardin, M.M.J. Treacy, J. Hugdahl, S. Lynum, T.W. Ebbesen, Nature 388, 451 (1997)

    Article  ADS  Google Scholar 

  13. D.L. Carroll, Redlich, P.M. Ajayan, J.C. Charlier, X. Blase, A. De Vita, R. Car, Phys. Rev. Lett. 78, 2811 (1997)

    Article  ADS  Google Scholar 

  14. K. Kobayashi, Phys. Rev. B 61, 8496 (2000)

    Article  ADS  Google Scholar 

  15. J.-C. Charlier, G.-M. Rignanese, Phys. Rev. Lett. 86, 5970 (2001)

    Article  ADS  Google Scholar 

  16. R. Tamura, M. Tsukada, Phys. Rev. B 49, 7697 (1994)

    Article  ADS  Google Scholar 

  17. R. Tamura, M. Tsukada, Phys. Rev. B 52, 6015 (1995)

    Article  ADS  Google Scholar 

  18. V. Meunier, M.B. Nardelli, C. Roland, J. Bernholc, Phys. Rev. B 64, 195419 (2001)

    Article  ADS  Google Scholar 

  19. P.E. Lammert, V.H. Crespi, Phys. Rev. Lett. 85, 5190 (2000)

    Article  ADS  Google Scholar 

  20. P.E. Lammert, V.H. Crespi, Phys. Rev. B 69, 035406 (2004)

    Article  ADS  Google Scholar 

  21. O.A. Shenderova, B.L. Lawson, D. Areshkin, D.W. Brenner, Nanotechnology 12, 191 (2001)

    Article  ADS  Google Scholar 

  22. C. Ming, Z.-Z. Lin, J. Zhuang, X.-J. Ning, Appl. Phys. Lett. 100, 063119 (2012)

    Article  ADS  Google Scholar 

  23. N. Yang, G. Zhang, B. Li, Appl. Phys. Lett. 93, 243111 (2008)

    Article  ADS  Google Scholar 

  24. O.O. Adisa, B.J. Cox, J.M. Hill, J. Phys. Chem. C 115, 24528 (2011)

    Article  Google Scholar 

  25. K. Ajima, T. Murakami, Y. Mizoguchi, K. Tsuchida, T. Ichihashi, S. Iijima, M. Yudasaka, ACS Nano 2, 2057 (2008)

    Article  Google Scholar 

  26. K. Kowalski, J. Rembieliński, Ann. Phys. 329, 146 (2013)

    Article  ADS  Google Scholar 

  27. F.A. Gomes, E.O. Silva, J.R.F. Lima, C. Filgueiras, F. Moraes, J. Phys. A: Math. Theor. 50, 065302 (2017)

    Article  ADS  Google Scholar 

  28. M.D. Lopes, S. Azevedo, F. Moraes, M. Machado, Eur. Phys. J. B 88, 10 (2015)

    Article  ADS  Google Scholar 

  29. J. González, F. Guinea, M.A.H. Vozmediano, Phys. Rev. Lett. 69, 172 (1992)

    Article  ADS  Google Scholar 

  30. J.R. Lima, J. Brandão, M.M. Cunha, F. Moraes, Eur. Phys. J. D 68, 94 (2014)

    Article  ADS  Google Scholar 

  31. J.R.F. Lima, J. Appl. Phys. 117, 084303 (2015)

    Article  ADS  Google Scholar 

  32. M.M. Cunha, J. Brandão, J.R.F. Lima, F. Moraes, Eur. Phys. J. B 88, 288 (2015)

    Article  ADS  Google Scholar 

  33. A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  34. N. Birrell, P. Davies, Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 1984)

  35. C. Misner, K. Thorne, J. Wheeler, in Gravitation (W.H. Freeman, 1973), No. pt. 3

  36. M.A. Vozmediano, M. Katsnelson, F. Guinea, Phys. Rep. 496, 109 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  37. C. Furtado, F. Moraes, A.d.M. Carvalho, Phys. Lett. A 372, 5368 (2008)

    Article  ADS  Google Scholar 

  38. Y. Aharonov, D. Bohm, Phys. Rev. 123, 1511 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  39. M. Bueno, C. Furtado, A.d.M. Carvalho, Eur. Phys. J. B 85, 53 (2012)

    Article  ADS  Google Scholar 

  40. R.A. Puntigam, H.H. Soleng, Class. Quant. Grav. 14, 1129 (1997)

    Article  ADS  Google Scholar 

  41. C. Filgueiras, F. Moraes, Ann. Phys. 323, 3150 (2008)

    Article  ADS  Google Scholar 

  42. C. Filgueiras, E. Silva, W. Oliveira, F. Moraes, Ann. Phys. 325, 2529 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Azevedo Gomes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, F.A., Bezerra, V.B., de Lima, J.R.F. et al. Electronic properties of single and double napped carbon nanocones. Eur. Phys. J. B 92, 41 (2019). https://doi.org/10.1140/epjb/e2019-90258-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-90258-0

Keywords

Navigation