Skip to main content
Log in

Tunneling spectrum in triplet p-wave superconductor-silicene junctions

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The tunneling spectrum in normal/triplet p-wave superconductor (N/pS)-undoped and doped silicene junction is studied based on Blonder-Tinkham-Klapwijk (BTK) theory. Three kinds of pairings for pS are chosen: px, py, px + ipywaves. It is found that the normalized conductance (NC) strongly depends on the kind of pairings, the insulating gap which varies in magnitude with an applied electric field (Ez) and the chemical potential in the normal silicene region. For N/pS-undoped silicene junctions, the Andreev reflection (AR) and the NC can be switched on or off by the applied electric field while the transport can occur for all the bias voltage in doped silicene junctions. A sharp zero-bias conductance peak (ZBCP) is obtained in N/pS-doped silicene junction that is independent of the values of the insulating gap of silicene and distinctly different from the normal/d-wave superconductor-silicene junctions. In addition, for N/pxS-silicene junctions the NC exhibits a double-minimum structure when the bias voltage eV = 0.8Δ0 with Δ0 the zero-temperature energy gap of pS while a little peak appears for N/pyS case. In N/px+ipyS-silicene junctions a sharp peak and a conductance dip appear at eV = 0.8Δ0 and eV = Δ0, respectively. It is hoped that the results obtained may guide the design of silicene devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.W.J. Beenakker, Phys. Rev. Lett. 97, 067007 (2006)

    Article  ADS  Google Scholar 

  2. H. Min, J.E. Hill, N.A. Sinitsyn, B.R. Sahu, L. Kleinman, A.H. MacDonald, Phys. Rev. B 74, 165310 (2006)

    Article  ADS  Google Scholar 

  3. Y. Yao, F. Ye, X.-L. Qi, S.-C. Zhang, Z. Fang, Phys. Rev. B 75, 041401 (2007)

    Article  ADS  Google Scholar 

  4. B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, B. Aufray, Appl. Phys. Lett. 97, 223109 (2010)

    Article  ADS  Google Scholar 

  5. M. Ezawa, Phys. Rev. Lett. 109, 055502 (2012)

    Article  ADS  Google Scholar 

  6. M. Ezawa, New J. Phys. 14, 033003 (2012)

    Article  ADS  Google Scholar 

  7. C.L. Lin, R. Arafune, K. Kawahara, N. Tsukahara, E. Minamitani, Y. Kim, N. Takagi, M. Kawai, Appl. Phys. Express 5, 045802 (2012)

    Article  ADS  Google Scholar 

  8. P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Phys. Rev. Lett. 108, 155501 (2012)

    Article  ADS  Google Scholar 

  9. A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, Y.Y. Takamura, Phys. Rev. Lett. 108, 245501 (2012)

    Article  ADS  Google Scholar 

  10. M. Ezawa, Phys. Rev. Lett. 110, 026603 (2013)

    Article  ADS  Google Scholar 

  11. L. Chen, B. Feng, K. Wu, Appl. Phys. Lett. 102, 081602 (2013)

    Article  ADS  Google Scholar 

  12. A. Yamakage, M. Ezawa, Y. Tanaka, N. Nagaosa, Phys. Rev. B 88, 085322 (2013)

    Article  ADS  Google Scholar 

  13. M. Ezawa, Phys. Rev. B 87, 155415 (2013)

    Article  ADS  Google Scholar 

  14. F. Liu, C.C. Liu, K. Wu, F. Yang, Y. Yao, Phys. Rev. Lett. 111, 066804 (2013)

    Article  ADS  Google Scholar 

  15. L.D. Zhang, F. Yang, Y. Yao, Sci. Rep. 5, 8203 (2015)

    Article  Google Scholar 

  16. C.C. Liu, W. Feng, Y. Yao, Phys. Rev. Lett. 107, 076802 (2011)

    Article  ADS  Google Scholar 

  17. R. Saxena, A. Saha, S. Rao, Phys. Rev. B 92, 245412 (2015)

    Article  ADS  Google Scholar 

  18. G.C. Paul, S. Sarkar, A. Saha, Phys. Rev. B 94, 155453 (2016)

    Article  ADS  Google Scholar 

  19. C.W.J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008)

    Article  ADS  Google Scholar 

  20. J. Linder, T. Yokoyama, Phys. Rev. B 89, 02050 (2014)

    Article  Google Scholar 

  21. Y. Hajatia, S. Vosoughi niab, G. Rashedi, Super. Micr. 102, 202 (2017)

    Article  Google Scholar 

  22. A.F. Andreev, Zh. Eksp. Teor. Fiz 46, 1823 (1964)

    Google Scholar 

  23. G.E. Blonder, M. Tinkham, T.M. Klapwijk, Phys. Rev. B 25, 4515 (1982)

    Article  ADS  Google Scholar 

  24. T. Hirai, Y. Tanaka, N. Yoshida, Y. Asano, J. Inoue, S. Kashiwaya, Phys. Rev. B 67, 174501 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Yang, X. Tunneling spectrum in triplet p-wave superconductor-silicene junctions. Eur. Phys. J. B 92, 275 (2019). https://doi.org/10.1140/epjb/e2019-100529-1

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100529-1

Keywords

Navigation