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Abstract. We study the entanglement entropy of random partitions in one- and two-dimensional critical
fermionic systems. In an infinite system we consider a finite, connected (hypercubic) domain of linear
extent L, the points of which with probability p belong to the subsystem. The leading contribution to the
average entanglement entropy is found to scale with the volume as a(p)LD, where a(p) is a non-universal
function, to which there is a logarithmic correction term, b(p)LD−1 lnL. In 1D the prefactor is given by
b(p) = c

3
f(p), where c is the central charge of the model and f(p) is a universal function. In 2D the prefactor

has a different functional form of p below and above the percolation threshold.

1 Introduction

The entanglement properties of many-body quantum sys-
tems are subjects of recent intensive theoretical studies
[1–4]. The entanglement between two partitions A and B
of a system being in a pure state |Ψ〉 can be measured
by the entanglement entropy [5]: S = −TrBρB ln ρB =
−TrAρA ln ρA. Here ρA = TrBρ and ρB = TrAρ are the
reduced density matrices of the subsystems A and B,
respectively, and ρ = |Ψ〉〈Ψ|.

Most of the studies are restricted to bipartitions with
a smooth, regular boundary between A and B, for exam-
ple in one dimension (1D) the subsystem A contains the
successive sites i = 1, 2, . . . , L, and B is represented by
the rest of the sites. If the system is gapped the entan-
glement entropy generally satisfies the so-called area law
[3]: S ∼ LD−1. In one-dimensional critical systems, with
algebraically decaying correlations, the area law is supple-
mented by a logarithmic correction, which for conformally
invariant systems is given by [6–14]

S(L) ' c

3
lnL+ c1 (1)

where c is the central charge of the conformal algebra.
Multidimensional (D > 1) free fermion systems satisfy

an area law if the spectrum is gapped [15] or the Fermi
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surface has high codimension [16]. In the case of a sharp
D − 1 dimensional Fermi surface, there is a logarithmic
correction to the are law [15,17], and the entanglement
entropy is given by the following expression [18–20]

S(L) =
Ld−1

(2π)d−1
lnL

12

∫ ∫
|nx · nk|dAxdAk , (2)

where the integral is over a scaled version of the spatial
and the Fermi surface, in such a way that the volume
of the (scaled) Fermi sea is 1, and nx and nk are unit
normals to the real space boundary and the Fermi surface,
respectively.

In disordered quantum spin chains the average entan-
glement entropy at the critical point has a logarithmic size
dependence [21–27], too, which can be calculated by the
strong disorder RG method [28,29]. In higher dimensional,
critical random quantum systems there is an additive log-
arithmic correction due to corners, the prefactor of which
is universal, i.e. independent of the form of disorder [30].

If the subsystem A is not a singly connected domain,
much less (analytical) results are available. Here we men-
tion that if A and B contain the sites of two sublattices
the contact points between them scale with the volume of
the system and so behaves the entanglement entropy, too
[31]. The entanglement entropy of irregular subsystems
with non-continuous border is also subject of research in
the recent years. General upper and lower bounds have
been set for fractal boundary in real space and fractal
like Fermi-surface in reference [20]. Fractal bipartition in
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the topologically ordered phase of the toric code with a
magnetic field was also investigated in reference [32].

In the present paper we study the entanglement entropy
when A is selected by a random partition. This type of
setting has already been used in reference [33], in which
points of a subsystem were selected with a probability p
and the low-lying part of the entanglement Hamiltonian
is calculated for the non-critical Kitaev-chain [34]. Here
we consider a somewhat different selection of the points
of the subsystem. The complete system has an infinite
extent in which a finite domain of linear size, L is defined
and points of this domain belong to A with probability
p. Due to a large number of interfaces between A and B
the average entanglement entropy, 〈S(L)〉, is expected to
have a leading volume term (for p < 1), to which singular
subleading corrections could appear in critical systems,
like for p = 1. Here we consider critical fermionic mod-
els, hopping models in 1D and 2D, as well as the critical
Kitaev-chain.

The rest of the paper is organised as follows. Models and
the methods of calculations are presented in Section 2.
Lower and upper bounds for the entanglement entropy
are calculated in Section 3, while small p and small 1− p
expansions are performed in Section 4. This is followed by
extensive numerical calculations in Section 5, for differ-
ent values of the occupation probability p and the linear
size of the (hypercubic) domain, L. We discuss our results
in Section 6 while detailed calculations are put to the
Appendices.

2 Models and methods

We consider fermionic hopping models with half filling
defined by the Hamiltonian

H = −t
∑
〈i,j〉

c†i cj , (3)

in terms of the fermion creation, c†i , and annihilation, cj ,
operators at lattice sites i and j, respectively and the
summation runs over nearest neighbour lattice sites. The
lattice is either an infinite chain (1D) or an infinite square
lattice (2D), in the latter case the components of the
positions are i = (ix, iy) and j = (jx, jy).

Having the two-point correlation function, C(i, j) =

〈c†i cj〉 for i, j ∈ A, we can calculate the entanglement
entropy of the system as

S =− TrA [C lnC + (1− C) ln(1− C)]

=−
NA∑
i=1

[ζi ln ζi + (1− ζi) ln(1− ζi)] = −
NA∑
i=1

s(ζi) ,

(4)

where NA is the dimension of the correlation matrix (num-
ber of sites in the subsystem), and ζi are the eigenvalues
of the correlation matrix. As discussed in the introduction
we consider finite domains of linear extent, L (subsequent
points in 1D and a square in 2D) the points of which

belong to the subsystem A with probability p. We have

2L (2L
2

) different subsystems in 1D (2D), for which the
entanglement entropy needs to be averaged, while the
average value of NA is pL (pL2) in 1D (2D).

For the hopping model C(i, i) = 1/2, whereas for i 6= j
we have

C(i, j) =
1

π(i− j)
sin

π(i− j)
2

(5)

in 1D and

C(i, j) =


0, if (ix − jx)2 − (iy − jy)2 = 0

− (−1)ix−jx − (−1)iy−jy

π2 [(ix − jx)2 − (iy − jy)2]
, otherwise

,

(6)
in 2D.

For the non-random partition (with p = 1) the bipartite
entanglement entropy in 1D is given by equation (1) with

the central charge chop = 1 and the constant is chop1 ≈
0.726 [11–13]. In 2D for an L×L subsystem the prefactor
of L lnL in equation (2) is given by 2/3, which has been
verified by numerical calculations [19,38].

Our second fermionic model is the critical Kitaev chain
defined by the Hamiltonian [34]

HKit =−
l=+∞∑
l=−∞

[
(c†l+1cl + c†l cl+1)− (c†l+1c

†
l + clcl+1)

+(c†l cl − 1/2)
]
. (7)

This model corresponds to the fermionic form of the
critical quantum Ising chain, what is obtained after per-
forming the standard Jordan-Wigner transformation [35].
The relevant correlation function for this model is

C(i, j) = 〈(c†i − ci)(c
†
j + cj)〉 , (8)

given by [26]

C(i, j) =
2

π

(−1)i−j

2(i− j) + 1
. (9)

For the non-random partition (with p = 1) the entangle-
ment entropy of the Kitaev chain (or the critical quantum
Ising chain) is again given by equation (1), with the
central charge cKit = 1/2 and the constant is cKit

1 =

chop1 /2 + cKit/3 ≈ 0.528. Note, however, that if the sub-
system A is not a single connected domain, as is the case
for random partitions, then the entanglement entropy of
the critical Kitaev chain and that of the critical quantum
Ising chain is different, due to the non-local nature of the
Jordan-Wigner transformation [31].
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Fig. 1. Average entanglement entropy per domain size of the
1D hopping model calculated by the indirect method. The
series expansion results for p � 1 and for 1 − p � 1 are pre-
sented by red lines, whereas the obtained lower bound is drawn
by a dotted line.

3 Lower and upper bounds from particle
number fluctuations

Following standard techniques [36,37], we can calculate a
lower bound to the entanglement entropy by using the
inequality

s(x) ≥ 4 ln(2)x(1− x) (10)

where s(x) is defined in equation (4). Then, for the entropy
we obtain

S ≥ 4 ln 2Tr
[
C − C2

]
= 4 ln 2

[
〈N2〉 − 〈N〉2

]
, (11)

where N =
∑NA

i=1 c
†
i ci is the particle number operator

in the subsystem. This lower bound was used to prove
the behaviour of the entanglement entropy of multidi-
mensional free fermions [17] as well as of fractal-shaped
partitions [32]. The particle number fluctuations in the
case of a random partition of a uniform probability are
presented in Appendix A in one and two dimensions. From
these we obtain the lower bounds

〈S〉1D ≥ ln(2)Lp(1− p) + 4 ln(2)
p2

π2
ln(L− 1) , (12)

〈S〉2D ≥ ln(2)L2p(1− p) + 4 ln(2)
2p2

π2
L

(
lnL− 4

π2

)
.

(13)

These bounds are plotted in Figures 1 and 6. The leading
term of the 2D lower bound in equation (13) is propor-
tional to the area of 2D percolation clusters [39], given by
Etot
s = 4L2p(1− p).
We note, that by shifting the parabola x(1−x) upwards,

one can also obtain upper bounds, for example with a shift

of 0.08 it holds as

s(x) ≤ 4 ln(2)x(1− x) + 0.08 . (14)

This leads to an upper bound for the prefactor of the
volume term.

4 Limiting behaviours for p� 1 and for
1− p� 1

The average entanglement entropy can be calculated as a
series expansion in p, performed in Appendix B for 1D,
leading to the following result up to O(p3)

〈S〉1D = (p ln 2− αp2 + . . . )L+

(
2p2

π2
+ . . .

)
lnL , (15)

where α = 0.5335 is defined in equation (B.7).
Similarly in two dimensions, the leading terms are

〈S〉2D =
(
p ln 2 +O(p2)

)
L2 +

(
2p2

π2
+O(p4)

)
L lnL .

(16)
The other limiting case, 1− p� 1 can be treated as fol-
lows. Here, the logarithmic corrections approach the clean
system’s results, but due to dilution a volume term will
appear. Let us now concentrate on the infinite subsystem
(denoted by B), which – in the limit 1 − p � 1 – con-
sists of two half lines (in 1D) or the whole plane without
the square (in 2D), as well as some isolated points from
the interval (square). By neglecting correlations between
isolated points, the correlation matrix of the infinite sub-
system becomes block diagonal. One block contains the
correlation matrix of the infinite subsystem without the
isolated sites, i.e. with p = 1. The other block corresponds
to the isolated sites, and has the dimension of the number
of isolated points, ÑD = (1− p)LD, containing 1/2 in its
diagonal as

CB =

[
C(p = 1) 0

0 1
21

]
. (17)

From this follows that the leading correction to the
entanglement entropy is

〈S〉 = Tr s(CB) ≈ S(p = 1)+ln(2)(1−p)Ld+O
[
(1− p)2

]
.

(18)
Note, that the series expansion results for the volume term
agree with the lower bound for p� 1 and 1− p� 1.

5 Numerical results

For finite subsystems of linear size, L, we have calcu-
lated the average entanglement entropy numerically. For
the averaging process over different samples we have used
three different methods. In the direct method a large num-
ber of samples are generated at a fixed value of p and the
entanglement entropy is calculated for each sample, and
this calculation is repeated for several values of p. This
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method generally gives an accurate average value at a
given p, if the number samples is large enough (106 . . . 108)
for each p, but comparing the results for different values
of p leads to large errors since the samples are different at
each p.

In the so called indirect method we use the relation

〈S〉(p) =
N∑
n=0

〈Sn〉
(
N
n

)
pn(1− p)N−n , (19)

where N = L (N = L2) in 1D (2D), and 〈Sn〉 denotes the
average entanglement entropy of a subsystem of n sites,
where the averaging is performed over all possible parti-
tions. In practice, we have generated a large number of
random samples with uniform probability for all values
of n. These samples and their entanglement entropy are
stored and used to calculate 〈S〉(p) for different values
of p. The advantage of the indirect method is that we
need comparatively less samples (∼ 106) and the numeri-
cal derivation with respect to p is more smooth, compared
to the direct method.

In our third, replica method we generated for each ran-
dom subsystem sample one (four) replicas in 1D (2D)
and fused them together. By comparing the entanglement
entropy of the original and the replicated sample one can
cancel the leading volume term and gain direct access
to the more interesting, subleading corrections. For the
best results, our calculations have generally combined the
replica method with the indirect method.

5.1 1D hopping model

For the 1D hopping model we used the indirect method
to calculate the average entanglement entropy for domain
sizes L = 16, 32, . . . , 1024, with 106 realizations in each
case. In agreement with the analytical results on the lower
bound in equation (12) and the perturbation expansions
in equations (15) and (18), the leading contribution scales
linearly with the number of sites in the domain, L. This is
illustrated in Figure 1, where the average numerical vale of
the entanglement entropy per domain size 〈S〉/L is plotted
together with the analytical results.

The asymptotic behavior of the average entanglement
entropy is expected to contain sub-leading terms in the
form

〈S〉(L) = a(p)L+ b(p) lnL+ c1(p) . (20)

The prefactor of the volume contribution, a(p), which can
be represented by extrapolating the curves in Figure 1,
is close to symmetric, a(p) ≈ ãp(1 − p). More interest-
ing are the subleading terms in equation (20), which are
conveniently analysed by the replica method using the
difference

2〈S〉(L, p)− 〈S〉repl(2L, p) = b(p)(lnL− ln 2) + c1(p) .
(21)

Here 〈S〉repl(2L, p) denotes the average entanglement
entropy in the replicated samples, which are obtained by

Fig. 2. Prefactor of the logarithmic term of the average entan-
glement entropy of the 1D hopping chain (green) and twice
the same the 1D critical Kitaev chain (red), calculated by the
replica method, see text. The series expansion result for the 1D
hopping chain at small p is shown by a dotted line. In the inset
the ratio of the two prefactors are shown and the dashed line
represents the ratio of the conformal charges: cKit/chop = 1/2.

Fig. 3. The constant of the average entanglement entropy of
the 1D hopping chain (green) and that of the 1D critical Kitaev
chain (red), calculated by the replica method, see text. The
dashed curves on the main panel corresponds to c1(1)p2 In
the inset the difference c1(p) − c1(1)p2 are shown for the two
models.

joining the same sample behind another copy. By com-
paring results at sizes L and 2L, finite-size estimates
are calculated for the prefactor, b(p), and the constant,
c1(p), which are then extrapolated. These are plotted in
Figures 2 and 3, respectively. The prefactor, b(p), starts
quadratically for small p, in agreement with the series
expansion in equation (15), while at p = 1 reaches the
conformal result: b(1) = chop/3 = 1/3, see in equation (1).
The constant, c1(p), also appears to start quadratically at
small p, while at p = 1 reaches the known result, as quoted
below equation (6). Interestingly, we have found an over-
all quadratic dependence: c1(p) ≈ p2c1(1), as illustrated
in the inset of Figure 3.

We have also studied the distribution of the entan-
glement entropy, shown in Figure 4 for different sizes
at p = 0.25. These distributions are well represented by
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Fig. 4. Probability distribution of the entanglement entropy
of the 1D hopping chain at p = 0.25 for different sizes: L =
64, 128, 512, 1024, from left to right. In the inset the scaled
curves are shown assuming Gaussian behaviour.

Fig. 5. Average entanglement entropy per domain size of the
critical Kitaev chain calculated by the indirect method.

Gaussians, as illustrated in terms of scaled distributions
in the inset. Similar, Gaussian distributions are observed
for other values of p as well, but close to p = 1 there
is a cross-over regime, where the volume contribution,
ln(2)(1−p)L, and the logarithmic term, c/3 lnL, compete,
see in equation (18).

5.2 Critical Kitaev chain

For the critical Kitaev chain we have calculated the entan-
glement entropy of random partitions, as described in the
previous subsection. Here we have used finite domains of
size: L = 16, 32, . . . , 512 and the averages are calculated
by the indirect method over 106 samples. As for the 1D
hopping chain, the dominant contribution to the average
entanglement entropy is the volume term, as illustrated
in Figure 5 where the average entanglement entropy per
domain size is shown for different values of L. The shape of
the extrapolated curve is similar to that of the 1D hopping
chain in Figure 1 and it is again approximately symmetric
with respect to p→ (1− p).

The subleading correction terms are found to be in the
same form as given in equation (20). Using the replica
method and equation (21) we have calculated estimates

Fig. 6. Average entanglement entropy per domain volume of
the 2D hopping model calculated by the indirect method. The
series expansion for p � 1 and 1 − p � 1 are presented by
red dotted line, whereas the lower bound is drawn by a black
dotted line.

for the prefactor of the logarithmic term, b(p), as well as
of the constant, c1(p), and their extrapolated values are
plotted in Figures 2 and 3, respectively. Considering the
prefactor, b(p), its form is very similar to that found for the
1D hopping chain: their ratio is given by b(p)Kit/b(p)hop ≈
1/2 = cKit/c

hop. This is illustrated in the inset of Figure 2.
As seen in Figure 3 the constant term, cKit

1 (p), has also an
approximately quadratic dependence: cKit

1 (p) ≈ p2cKit
1 (1),

as illustrated in the inset of Figure 3.

5.3 2D hopping model

Here we consider the hopping model in a square lattice, in
which the domain is an L×L square. We have calculated
the entanglement entropy of samples having finite subsys-
tems with linear extension L = 8, 12, 16, 24, 32, 48 and 64,
while averages are obtained through the indirect method
over 105 samples. According to the analytical results in
equations (13) and (16) the average entanglement entropy
is expected to be dominated by the surface term to which
the first correction is logarithmic:

〈S〉(L) = a(p)L2 + b(p)L lnL+ . . . (22)

This is in agreement with our numerical results in
Figure 6, showing the average entanglement entropy per
domain surface. For increasing L, the curves approach
the prefactor, a(p), which is approximately symmetric,
a(p) ≈ ãp(1 − p). Comparing this figure with the one-
dimensional results in Figures 1 and 5 the convergence
is here slower, due to considerably smaller linear size of
the domains in 2D.

The prefactor of the logarithmic term is estimated
through the replica method: comparing the (four times)
entanglement entropy of each sample of size L, with those
composed of four joint identical samples, thus having a
linear size 2L

4〈S〉(L, p)− 〈S〉repl(2L, p) = b(p, L)2L ln(L/2) . (23)
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Fig. 7. Effective, size-dependent prefactor of the logarithmic
correction term in the average entanglement entropy of the 2D
hopping model calculated through the replica method in equa-

tion (23). In the first inset the derivative
∂b(p, L)

∂p
is shown.

In the second inset the finite-size transition points are plotted
as a function of L−3/4, see the text. The dashed blue line is
guide to the eye, the horizontal black dashed line represents
the transition point for site percolation.

Equation (23) defines an effective, size-dependent prefac-
tor, b(p, L), which is plotted in Figure 7. As seen in this
figure b(p, L) starts quadratically for small p and becomes
approximately linear for larger values of the probability.
To study this behaviour further we have calculated the
derivative of b(p, L) with respect to p, which is shown
in the first inset of Figure 7. We note, that in the indi-
rect method the differentiation of equation (19) can be
performed at each value of p, which reduces the error of

the calculation. Inspecting the behaviour of
∂b(p, L)

∂p
we

can identify two regions. In the first regime the deriva-
tive continuously increases, while in the second regime
it becomes approximately constant. In finite subsystems
there is an extended cross-over region between the two
regimes, which, however, shrinks with increasing L.

We summarize these findings in the conjecture that the
change in the behaviour of b(p, L) is related to the per-
colation transition [40], which takes place in the random
partitioning at a critical value pc = 0.592, if L → ∞. To
further check this hypothesis, we have defined finite-size
transition points between the two regions as the crossing
point, where the linear continuation of the curve starting
from p = .5 for p > 0.5 reaches the value of the con-
stant measured at p / 1. These finite-size transition points
are plotted in the second inset of Figure 7 as a func-
tion of L−1/ν , with ν = 4/3 being the correlation-length
critical exponent of 2D percolation, governing finite-size
effects [40]. Indeed the extrapolated value of the finite-size
transition point agrees with pc, within the error of the cal-
culation. We have also checked that the volume term with
a(p) shows no sign of a singularity at any value of p.

6 Discussion

We have studied the entanglement entropy of critical free-
fermion models in one and two dimensions, when the sites

of the subsystem were taken from a hypercubic domain
of linear size L randomly, with probability p. We have
investigated the average entanglement entropy by calcu-
lating lower bounds, by series expansions and performing
extensive numerical calculations. When the entire system
has infinite extent, the average entanglement entropy for
0 < p < 1 is found to be dominated by the volume term
a(p)LD, which is supplemented by logarithmic correc-
tions as b(p)LD−1 lnL. The volume term is non-universal,
which is connected to the fact, that the distribution of
the entanglement entropy is Gaussian. On the contrary,
the logarithmic correction is found to contain information
about the universal, critical characteristics of the system.
In 1D, comparing the results of the hopping chain and
that of the Kitaev chain the prefactor of the logarithm
is found to scale as: b(p) = cf(p), where f(p) is a uni-
versal, model independent function and c is the central
charge of the critical model. Interestingly, for both mod-
els the constant term is obtained in a pure quadratic form:
c1(p) ≈ p2c1(1). In 2D, for the hopping model b(p) is
shown to change its behaviour at the percolation tran-
sition point, pc, where the random subsystem develops
an infinite cluster. According to our numerical results the

derivative,
∂b(p, L)

∂p
, is increasing with p for p < pc, but

it saturates to a constant for p > pc. This conjectured
behaviour would be interesting to justify independently
by physical arguments, perhaps even with some rigorous
method.

Our study can be extended to several further directions
as discussed next.

6.1 Finite environment

We studied the case when the size of the entire system is
Ltot → ∞. For a finite value of Ltot, the results should
depend on the ratio L/Ltot. In 1D, for non-random parti-
tions with p = 1, the functional form of the entanglement
entropy as a function of L/Ltot is known from conformal
invariance [7]. For the 1D hopping model with random
partitions, we have checked that the prefactor b(p) van-
ishes in the case L/Ltot = 1. This is illustrated in Figure 8,
where the ratio

〈S〉(2L)− 〈S〉(L)

L ln 2
=

a

ln 2
+ b

1

L
(24)

is plotted against 1/L at p = 1/2. The slope of the points,
which defines b, indeed tends to zero for L→∞, as seen
in the inset of Figure 8.

6.2 Position dependent selection probability

Another potential extension of our study is to consider a
different type of probability distribution for selecting the
points of the subsystem. For the 1D hopping model, we
have also checked a position dependent probability

pi = 1− 1

2

1

lκi
, (25)

https://epjb.epj.org/
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Fig. 8. The ratio in equation (24) versus 1/L in the case
with L/Ltot = 1 and p = 0.5. In the inset the slope of the
curve calculated by two point fit is presented, which defines
finite-size estimates for the prefactor b.

Fig. 9. Average entanglement entropy with site dependent
probability in one dimension. The logarithm of the average
entanglement entropy ln〈S〉 as a function of lnL, for 1 ≤ κ ≤ 3.
The black lines are guides to the eye, the slope of the lower
and upper lines are 1/3 and 1/3 + ln(2), respectively. In the
inset the α exponent of the power-law increase of the average
entanglement entropy is shown as a function of 0.1 ≤ κ ≤ 0.5,
see text.

where li = min(i, L − i) is the distance of the point i
from the nearest edge of the domain. By varying the
decay exponent κ ≥ 0 one can interpolate between the
non-random partitioning with pi = 1 for κ→∞ and the
uniform probability partitioning with pi = 1/2 for κ = 0.
The number of internal contact points between the sub-

system and the environment scales as
∫ L
0
l−κdl, which is

finite for κ > 1, it scales as lnL for κ = 1 and behaves as
L1−κ for 0 ≤ κ < 1.

We have calculated the average entanglement entropy
for different values of κ, ranging between 0.1 and 3.0
and the results are presented in Figure 9. For κ > 1
the dominant contribution is 〈S〉 = 1/3 lnL as for the
non-random partitioning case with κ → ∞. This is due
to the fact, that the ”volume term”, which scales with the
number of contact points is now O(1), thus it is sublead-
ing. In the borderline case, κ = 1, the size-dependence of

〈S〉 is still logarithmic, however with a different prefac-
tor: 〈S〉 ≈ (1/3 + ln 2) lnL. The increase of the prefactor
now is due to the ”volume contribution”, which scales
also logarithmically. Finally, for 0 ≤ κ < 1 the average
entanglement entropy scales as: 〈S〉 ∼ Lα, with α = 1−κ,
which involves the number of contact points and now it
is the dominant contribution. These results are illustrated
in the inset of Figure 9.

6.3 Some open problems

It would be interesting to try to determine the function
f(p) by a different method, perhaps even analytically. It
could also be interesting to check, if the observed univer-
sality holds for non-fermionic models, too. In addition,
one can consider models with random couplings and pose
similar questions treated in this paper.
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Appendix A: Particle number fluctuations

In 1D, the average particle number fluctuations are given
by[
〈N2〉 − 〈N〉2

]
1D

= 〈Tr C〉 − 〈Tr C2〉

=

〈∑
i∈A

c†i ci

〉
−

〈∑
i∈A

∑
j∈A
|C(i, j)|2

〉

=
1

2
pL− p

L∑
i=1

|C(i, i)|2 − p2
∑
i6=j

|C(i, j)|2

=
1

2
pL− 1

4
pL− 2p2

L/2∑
k=1

(L− 2k + 1)
1

π2(2k − 1)2

≈ 1

4
Lp(1− p) +

p2

π2
lnL . (A.1)
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In 2D, we obtain by a similar calculation

[
〈N2〉 − 〈N〉2

]
2D
≈ L2

4
p(1− p) +

2p2

π2
L

(
ln(L)− 4

π2

)
.

(A.2)

Appendix B: Series expansion

In 1D, the average entanglement entropy is written as

〈S〉 =
L∑

N=1

pN (1− p)L−N
∑

A,|A|=N

Tr[s(CA)] (B.1)

where the second sum goes for every subsystems A includ-
ing N sites, and having the correlation matrix CA. For
small p, we keep in equation (B.1) the terms with N = 1
and N = 2 and omit terms with O(p3), leading to

〈S〉 = pL ln 2−p2(L−1)L ln 2+p2
∑

A,|A|=2

Tr[s(CA)]+O(p3).

(B.2)
The correlation matrix of the two site subsystem is

C =

[
1/2 C(m,n)

C(m,n) 1/2

]
(B.3)

where m and n are indices of the points included in
the subsystem and C(m,n) is given in equation (5). The
eigenvalues of C are

ζn,m =

1/2 if |n−m| = even

1/2± 1

π(n−m)
if |n−m| = odd .

(B.4)

The entropy contribution from a term with |n−m| = even
is 2 ln 2, whereas from a term with |n−m| = odd is given
by 2 ln 2 + ∆(n,m), with

∆(n,m) =

[
2s

(
1/2 +

1

π(n−m)

)
− 2 ln 2

]
. (B.5)

Substituting this into equation (B.2) leads to

〈S〉 = pL ln 2 + p2
L∑

n,m=1; |n−m| odd

∆(n,m)

= pL ln 2 + np2
L/2∑
k=1

(L− 2k + 1)∆(2k, 1)

≈ L(p ln 2− αp2) + p2
2

π2
lnL , (B.6)

with

α = −
∞∑
k=1

[
2s

(
1/2 +

1

π(2k − 1)

)
− 2 ln 2

]
≈ 0.5335 .

(B.7)
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29. F. Iglói, C. Monthus, Eur. Phys. J. B 91, 290 (2018)
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