Skip to main content
Log in

Analysis and FPGA implementation of an autonomous Josephson junction snap oscillator

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

An autonomous Josephson junction (JJ) snap oscillator is designed and investigated in this paper. Depending on DC bias current, the proposed snap oscillator has two or no equilibrium points. The stability analysis of the two equilibrium points shows that one of the equilibrium point is unstable and the existence of Hopf bifurcation is established for the other equilibrium point. During the numerical analysis, some interesting dynamical behaviors such as chaotic self-excited attractors, chaotic hidden attractors, antimonotonicity, chaotic bubble hidden attractors, bistable period-1-bubble and coexistence between periodic and chaotic hidden attractors are found. Finally, the Field Programmable Gate Array (FPGA) of proposed snap oscillator is implemented. The results obtained from the FPGA implementation of proposed snap oscillator are qualitatively the same to the one obtained during the numerical simulations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Munmuangsaen, B. Srisuchinwong, Chaos Solitons Fractals 44, 995 (2011)

    Article  ADS  Google Scholar 

  2. F.Y. Dalkiran, J.C. Sprott, Int. J. Bifurc. Chaos 26, 1650189 (2016)

    Article  Google Scholar 

  3. S. Vaidyanathan, S. Jafari, V.-T. Pham, A.T. Azar, F.E. Alsaadi, Arch. Control. Sci. 28, 239 (2018)

    Google Scholar 

  4. I. Ahmad, B. Srisuchinwong, W.S. Um, IEEE Access 6, 35449 (2018)

    Article  Google Scholar 

  5. P. Arena, S. Baglio, L. Fortuna, G. Manganaro, Electron. Lett. 31, 250 (1995)

    Article  Google Scholar 

  6. A. Buscarino, L. Fortuna, M. Frasca, Physica D 238, 1917 (2009)

    Article  ADS  Google Scholar 

  7. S. Vaidyanathan, A. Sambas, M. Mamat, W.S. Sanjaya, Int. J. Model. Identif. Control 28, 153 (2017)

    Article  Google Scholar 

  8. G.F. Kuiate, K. Rajagopal, S.T. Kingni, V. Kamdoum Tamba, S. Jafari, Int. J. Dyn. Control 6, 1008 (2018)

    Article  MathSciNet  Google Scholar 

  9. A.S. Mansingka, M. Affan Zidan, M.L. Barakat, A.G. Radwan, K.N. Salama, Microelectron. J. 447, 44 (2013)

    Google Scholar 

  10. R.A. El-Nabulsi, Int. J. Non-Linear Mech. 93, 65 (2017)

    Article  ADS  Google Scholar 

  11. S. Vaidyanathan, A. Akgul, S. Kacar, U. Cavusoglu, Eur. Phys. J. Plus 133, 46 (2018)

    Article  Google Scholar 

  12. K.E. Klouverakis, J.C. Sprott, Chaos Solitons Fractals 28, 739 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  13. S.J. Linz, Chaos Solitons Fractals 37, 741 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Ren, S. Panahi, K. Rajagopal, A. Akgul, V.-T. Pham, S. Jafari, Z. Naturforsch 73, 239 (2018)

    Article  ADS  Google Scholar 

  15. V.-T. Pham, S. Vaidyanathan, C. Volos, S. Jafari, S.T. Kingni, Optik 127, 3259 (2016)

    Article  ADS  Google Scholar 

  16. S.T. Kingni, S. Jafari, H. Simo, P. Woafo, Eur. Phys. J. Plus 129, 76 (2014)

    Article  Google Scholar 

  17. S.T. Kingni, V.-T. Pham, S. Jafari, G.R. Kol, P. Woafo, Circuits Syst. Signal Process. 35, 1933 (2016)

    Article  Google Scholar 

  18. S.T. Kingni, V.-T. Pham, S. Jafari, P. Woafo, Chaos Solitons Fractals 99, 209 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. D. Dudkowski, S. Jafari, T. Kapitaniak, N.V. Kuznetsov, G.A. Leonov, A. Prasad, Phys. Rep. 637, 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. M.-F. Danca, N. Kuznetsov, G. Chen, Nonlinear Dyn. 88, 791 (2017)

    Article  Google Scholar 

  21. N. Kuznetsov, G. Leonov, M. Yuldashev, R. Yuldashev, Commun. Nonlinear Sci. Numer. Simul. 51, 39 (2017)

    Article  ADS  Google Scholar 

  22. N.V. Stankevich, N.V. Kuznetsov, G.A. Leonov, L.O. Chua, Int. J. Bifurc. Chaos 27, 1730038 (2017)

    Article  Google Scholar 

  23. N. Kuznetsov, G. Leonov, T. Mokaev, A. Prasad, M. Shrimali, Nonlinear Dyn. 92, 267 (2018)

    Article  Google Scholar 

  24. B. Soodchomshom, I.-M. Tang, R. Hoonsawat, Solid State Commun. 149, 1012 (2009)

    Article  ADS  Google Scholar 

  25. C.B. Whan, C.L. Lobb, Phys. Rev. E 53, 405 (1996)

    Article  ADS  Google Scholar 

  26. S.K. Dana, IEEE Trans. Circ. Syst. II 53, 1031 (2006)

    Article  Google Scholar 

  27. M. Canturk, I.N. Askerzade, IEEE Trans. Appl. Supercond. 21, 3541 (2011)

    Article  ADS  Google Scholar 

  28. M. Canturk, I. Askerzade, J. Supercond. Novel Magn. 26, 839 (2013)

    Article  Google Scholar 

  29. S.T. Kingni, G.F. Kuiate, V.K. Tamba, A.V. Monwanou, J.B. Chabi, J. Supercond. Novel Magn. 32, 2295 (2019)

    Article  Google Scholar 

  30. M.C. Santos, T. Nikolaidou, Geo-spat. Inf. Sci. 21, 75 (2018)

    Article  Google Scholar 

  31. V.K. Kornev, A.V. Arzumanov, J. Phys. IV 8, 279 (1998)

    Google Scholar 

  32. A. Kanasugi, M. Morisue, H. Noguchi, M. Yamadaya, H. Furukawa, IEICE Trans. Electron. E79-C, 1206 (1996)

    Google Scholar 

  33. J.W. Spargo, IEEE Trans. Appl. Supercond. 13, I (2003)

    Google Scholar 

  34. R.L. Kantz, R. Monaco, Am. J. Phys. 73, 875 (1985)

    Google Scholar 

  35. M. Bier, T.C. Bountis, Phys. Lett. A 104, 239 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  36. M.I. Kyprianidis, P. Haralabidis, I.N. Stouboulos, T.C. Bountis, Int. J. Bifurc. Chaos 10, 1903 (2000)

    Article  Google Scholar 

  37. S.P. Dawson, C. Grebogi, I. Kan, H. Kocak, J.A. Yorke, Phys. Lett. A 162, 249 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  38. K. Rajagopal, L. Guessas, A. Karthikeyan, A.K. Srinivasan, G. Adam, Complexity 2017, 1892618 (2017)

    Google Scholar 

  39. S.M. Ismail, L.A. Said, A.A. Rezk et al., AEU Int. J. Electron. Commun. 80, 114 (2017)

    Article  Google Scholar 

  40. K. Rajagopal, A. Karthikeyan, A.K. Srinivasan, Nonlinear Dyn. 87, 2281 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sifeu Takougang Kingni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kingni, S.T., Rajagopal, K., Kamdoum Tamba, V. et al. Analysis and FPGA implementation of an autonomous Josephson junction snap oscillator. Eur. Phys. J. B 92, 227 (2019). https://doi.org/10.1140/epjb/e2019-100304-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100304-x

Keywords

Navigation