Skip to main content
Log in

Parrondo games as disordered systems

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Parrondo’s paradox refers to the counter-intuitive situation where a winning strategy results from a suitable combination of losing ones. Simple stochastic games exhibiting this paradox have been introduced around the turn of the millennium. The common setting of these Parrondo games is that two rules, A and B, are played at discrete time steps, following either a periodic pattern or an aperiodic one, be it deterministic or random. These games can be mapped onto 1D random walks. In capital-dependent games, the probabilities of moving right or left depend on the walker’s position modulo some integer K. In history-dependent games, each step is correlated with the Q previous ones. In both cases the gain identifies with the velocity of the walker’s ballistic motion, which depends non-linearly on model parameters, allowing for the possibility of Parrondo’s paradox. Calculating the gain involves products of non-commuting Markov matrices, which are somehow analogous to the transfer matrices used in the physics of 1D disordered systems. Elaborating upon this analogy, we study a paradigmatic Parrondo game of each class in the neutral situation where each rule, when played alone, is fair. The main emphasis of this systematic approach is on the dependence of the gain on the remaining parameters and, above all, on the game, i.e., the rule pattern, be it periodic or aperiodic, deterministic or random. One of the most original sides of this work is the identification of weak-contrast regimes for capital-dependent and history-dependent Parrondo games, and a detailed quantitative investigation of the gain in the latter scaling regimes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G.P. Harmer, D. Abbott, Nature 402, 864 (1999)

    Article  ADS  Google Scholar 

  2. P.V.E. McClintock, Nature 401, 23 (1999)

    Article  ADS  Google Scholar 

  3. G.P. Harmer, D. Abbott, Stat. Sci. 14, 206 (1999)

    Article  Google Scholar 

  4. G.P. Harmer, D. Abbott, P.G. Taylor, Proc. R. Soc. London A 456, 247 (2000)

    Article  ADS  Google Scholar 

  5. J.M.R. Parrondo, G.P. Harmer, D. Abbott, Phys. Rev. Lett. 85, 5226 (2000)

    Article  ADS  Google Scholar 

  6. G.P. Harmer, D. Abbott, P.G. Taylor, J.M.R. Parrondo, Chaos 11, 705 (2001)

    Article  ADS  Google Scholar 

  7. G.P. Harmer, D. Abbott, Fluct. Noise Lett. 2, R71 (2002)

    Article  Google Scholar 

  8. J.M.R. Parrondo, L. Dinis, Contemp. Phys. 45, 147 (2004)

    Article  ADS  Google Scholar 

  9. D. Abbott, Fluct. Noise Lett. 9, 129 (2010)

    Article  Google Scholar 

  10. R.P. Feynman, R.B. Leighton, M. Sands, inFeynman Lectures on Physics (Addison-Wesley, Reading, MA, 1966), Vol. I, Chap. 46

  11. A. Ajdari, J. Prost, C.R. Acad. Sci. Paris, Ser. II 315, 1635 (1992)

    Google Scholar 

  12. M.O. Magnasco, Phys. Rev. Lett. 71, 1477 (1993)

    Article  ADS  Google Scholar 

  13. R.D. Astumian, M. Bier, Phys. Rev. Lett. 72, 1766 (1994)

    Article  ADS  Google Scholar 

  14. F. Jülicher, A. Ajdari, J. Prost, Rev. Mod. Phys. 69, 1269 (1997)

    Article  ADS  Google Scholar 

  15. P. Reimann, Phys. Rep. 361, 57 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  16. B. Cleuren, C. Van den Broeck, Europhys. Lett. 67, 151 (2004)

    Article  ADS  Google Scholar 

  17. C. Wang, N.G. Xie, L. Wang, Y. Ye, G. Xu, Fluct. Noise Lett. 10, 147 (2011)

    Article  Google Scholar 

  18. R.J. Kay, N.F. Johnson, Phys. Rev. E 67, 056128 (2003)

    Article  ADS  Google Scholar 

  19. S.N. Ethier, J. Lee, Electron. J. Probab. 14, 1827 (2009)

    Article  MathSciNet  Google Scholar 

  20. P. Bougerol, J. Lacroix,Products of Random Matrices, with Applications to Schrödinger Operators (Birkhäuser, Boston, 1985)

  21. A. Crisanti, G. Paladin, A. Vulpiani,Products of Random Matrices in Statistical Physics, Springer Series in Solid-State Sciences (Springer, Berlin, 1992)

  22. J.M. Luck,Systèmes désordonnés unidimensionnels (Collection Aléa, Saclay, 1992)

  23. J.B. Pendry, Adv. Phys. 43, 461 (1994)

    Article  ADS  Google Scholar 

  24. A. Comtet, C. Texier, Y. Tourigny, J. Phys. A 46, 254003 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  25. A. Comtet, Y. Tourigny, inStochastic Processes and RandomMatrices, edited by G. Schehr, A. Altland, Y.V. Fyodorov, N. O’Connell, L.F. Cugliandolo (Oxford University Press, Oxford, 2017)

  26. J.L. Doob,Stochastic Processes (Wiley, New York, 1953)

  27. W. Feller,An Introduction to Probability Theory and its Applications (Wiley, New York, 1968)

  28. S. Karlin, H.M. Taylor,A First Course in Stochastic Processes (Academic Press, New York, 1975)

  29. N.G. vanKampen,Stochastic Processes in Physics and Chemistry (North-, Amsterdam, 1992)

  30. F.P. Kelly,Reversibility and Stochastic Networks (Wiley, Chichester, 1979)

  31. D. Stirzaker,Stochastic Processes and Models (Oxford University Press, Oxford, 2005)

  32. G.C. Crisan, E. Nechita, M. Talmaciu, Fluct. Noise Lett. 7, C19 (2007)

    Article  Google Scholar 

  33. L. Dinis, Phys. Rev. E 77, 021124 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  34. T.W. Tang, A. Allison, D. Abbott, Fluct. Noise Lett. 4, L585 (2004)

    Article  Google Scholar 

  35. N.G. de Bruijn, Kon. Nederl. Akad. Wetensch. Proc. Ser. A 84, 27 (1981)

    Article  Google Scholar 

  36. D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Phys. Rev. Lett. 53, 1951 (1984)

    Article  ADS  Google Scholar 

  37. C. Janot,Quasicrystals: A Primer (Oxford University Press, Oxford, 1992)

  38. M. Senechal,Quasicrystals and Geometry (Cambridge University Press, Cambridge, 1995)

  39. E.L. Albuquerque, M.G. Cottam, Phys. Rep. 376, 225 (2003)

    Article  ADS  Google Scholar 

  40. E. Maciá, Rep. Prog. Phys. 69, 397 (2006)

    Article  ADS  Google Scholar 

  41. K.H. Cheong, J.M. Koh, M.C. Jones, BioEssays 41, 1900027 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Luck.

Additional information

Contribution to the Topical Issue “Recent Advances in the Theory of Disordered Systems”, edited by Ferenc Iglói and Heiko Rieger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luck, JM. Parrondo games as disordered systems. Eur. Phys. J. B 92, 180 (2019). https://doi.org/10.1140/epjb/e2019-100259-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100259-4

Navigation